Abstract:
For retrieval of a hovering aircraft, a cable, bar, or similar fixture is suspended in an approximately horizontal orientation across the retrieval area between two well-separated supports. The aircraft slowly flies into this fixture, which then slides along the aircraft in a direction approximately parallel with the aircraft's thrust line. This leads to the aircraft becoming fastened to the fixture by an interceptor or aircraft capturer, which in alternative embodiments are respectively on the aircraft or the fixture or both. Thrust is then reduced, and the aircraft comes to rest hanging from the fixture for subsequent removal. Retrieval is thus accomplished with simple and economical apparatus, light and unobtrusive elements on the aircraft, low risk of damage, and only moderate piloting accuracy.
Abstract:
A radio controlled (RC) vehicle includes a receiver that is coupled to receive an RF signal from a remote control device, the RF signal containing command data in accordance with a first coordinate system, wherein the first coordinate system is from a perspective of the remote control device. A motion sensing module generates motion data based on the motion of the RC vehicle. A processing module transforms the command data into control data in accordance with a second coordinate system, wherein the second coordinate system is from a perspective of the RC vehicle. A plurality of control devices control the motion of the RC vehicle based on the control data.
Abstract:
In specific embodiments, a vehicle propellable through fluids or along surfaces, comprises a main work section and a plurality of propulsion units for propelling the main work section. The main work section supports one or more payloads. The propulsion units each include a rotor system and a ring-shaped wheel at least partially arranged about the rotor system and rotatable about the rotor system. The ring-shaped wheel is arranged at a banked angle relative to the rotor system.
Abstract:
A single engine rotary wing aircraft is provided including a fuselage having a longitudinal first axis. A main rotor assembly is mounted to the fuselage for rotation about a second axis, perpendicular to the first axis. A tailboom is connected to an empennage. The tailboom is mounted to an end of the fuselage such that the tailboom is laterally offset from the first axis in a first direction. The rotary wing aircraft also includes a propulsion system. The single engine of the propulsion system is laterally offset from the first axis in a second direction opposite the first direction.
Abstract:
A radio controlled (RC) vehicle includes a receiver that is coupled to receive an RF signal from a remote control device, the RF signal containing command data in accordance with a first coordinate system, wherein the first coordinate system is from a perspective of the remote control device. A motion sensing module generates motion data based on the motion of the RC vehicle. A processing module transforms the command data into control data in accordance with a second coordinate system, wherein the second coordinate system is from a perspective of the RC vehicle. A plurality of control devices control the motion of the RC vehicle based on the control data.
Abstract:
A radio controlled (RC) aircraft includes a receiver that is coupled to receive an RF signal from a remote control device, the RF signal containing command data in accordance with a first coordinate system, wherein the first coordinate system is from a perspective of the remote control device. A motion sensing module generates motion data based on the motion of the RC aircraft. A processing module transforms the command data into control data in accordance with a second coordinate system, wherein the second coordinate system is from a perspective of the RC aircraft. A plurality of control devices control the motion of the RC aircraft based on the control data. In an embodiment, a remote control device commands the RC helicopter to substantially a hovering state when no force is applied to each of a plurality of spring-loaded interface devices.
Abstract:
An unmanned, towable aerovehicle is described and includes a container to hold cargo, an autogyro assembly connected to the container and to provide flight characteristics, and a controller to control operation the autogyro assembly for unmanned flight. The container includes a connection to connect to a powered aircraft to provide forward motive force to power the autogyro assembly. In an example, the autogyro assembly includes a mast extending from the container, a rotatable hub on an end of the mast, and a plurality of blades connected to the hub for rotation to provide lift to the vehicle. In an example, an electrical motor rotates the blades prior to lift off to assist in take off. The electrical motor does not have enough power to sustain flight of the vehicle.
Abstract:
A high altitude tethered platform, includes an airborne subsystem having a flight platform capable of flight. A powered propeller is mounted on the flight platform. A ground subsystem having a control system, a power delivery system, and a tether system is physically and operatively coupled to the flight platform. The tether system transmits power between the control system and the flight platform.
Abstract:
An electronic device for controlling an unmanned aerial vehicle (UAV) displays a portion of a 3D virtual scene of a monitored area of the UAV on a screen, and displays a representation icon of the UAV on a preset position of the screen. The electronic device further converts an operation signal to a control signal, and sends the control signal to control movements of the UAV. After receiving flight data from the UAV, the electronic device recognizes movements of the UAV according to the flight data, and determines adjustments to the portion of the 3D virtual scene, to control displaying of the 3D virtual scene based on the recognized movements while maintaining the representation icon of the UAV on the preset position and maintaining a direction the user presumed to be viewing the 3D virtual scene the same as a flight orientation of the UAV.
Abstract:
A device for aiding the deck-landing of an aircraft, the aircraft being controlled remotely from a mobile station, such as a ship, includes means for receiving data from the aircraft, notably attitudes of the aircraft, the aircraft hovering ready to land on deck, the deck-landing decision having to be taken under certain conditions that must all be met, the device including a computer making it possible to deliver temporal indicators indicating that all the conditions are met. The device includes a temporal gauge including a temporal graduation indicating mobile graphical zones representing the periods during which all the conditions are met for authorizing a deck-landing.