Abstract:
The invention provides a method of redistributing magnetically responsive beads in a droplet. The method may include conducting on a droplet operations surface one or more droplet operations using the droplet without removing the magnetically responsive beads from the region of the magnetic field. The droplet operations may in some cases be electrode-mediated. The droplet operations may redistribute and/or circulate the magnetically responsive beads within the droplet. In some cases, the droplet may include a sample droplet may include a target analyte. The redistributing of the magnetically responsive beads may cause target analyte to bind to the magnetically responsive beads. In some cases, the droplet may include unbound substances in a wash buffer. The redistributing of the magnetically responsive beads causes unbound substances to be freed from interstices of an aggregated set or subset of the magnetically responsive beads.
Abstract:
The invention provides nonlimiting examples of structures for and methods of dispensing droplets in a droplet actuator. The droplet actuator structures and methods of the invention exhibit numerous advantages over droplet actuators of the prior art. In various embodiments, the structures and methods of the invention provide, among other things, improved efficiency, throughput, scalability, and/or droplet uniformity, as compared with existing droplet actuators. Further, in some embodiments, the droplet actuators provide configurations for improved methods of loading and/or unloading fluid and/or droplets. In yet other embodiments, the droplet actuators provide fluid loading configurations for loading numerous fluid reservoirs in a substantially simultaneous and/or substantially sequential manner.
Abstract:
The present invention relates to filler fluids for droplet operations. According to one embodiment of this aspect, a droplet microactuator is provided and includes: (a) a first substrate comprising electrodes configured for conducting droplet operations on a surface of the substrate; (b) a second substrate spaced from the surface of the substrate by a distance sufficient to define an interior volume between the first substrate and second substrate, wherein the distance is sufficient to contain a droplet disposed in the space on the first substrate; and (c) a droplet arranged in the interior volume and arranged with respect to the electrodes in a manner which permits droplet operations to be effected on the droplet using the electrodes.
Abstract:
The invention provides droplet actuators and droplet actuator cassettes including reagent storage capabilities, as well as methods of making and using the droplet actuators and cassettes. The invention also provides continuous flow channel elements and techniques for using electrodes to manipulate droplets in flowing streams. The invention also discloses methods of separating compounds on a droplet actuator. Various other aspects of the invention are also disclosed.
Abstract:
The invention provides a droplet actuator. The droplet actuator may include a base substrate and a top substrate separated to form a gap. The base substrate may include electrodes configured for conducting droplet operations in the gap; and the top substrate may include a glass substrate portion coupled to a non-glass portion, where the non-glass portion may include one or more openings establishing a fluid path extending from an exterior of the droplet actuator and into the gap. The invention also provides related methods of manufacturing the droplet actuator, methods of using the droplet actuator, and methods of loading the droplet actuator.
Abstract:
The invention provides droplet actuators and droplet actuator techniques. Among other things, the droplet actuators and methods are useful for manipulating beads on a droplet actuator, such as conducting droplet operations using bead-containing droplets on a droplet actuator. For example, beads may be manipulated on a droplet actuator in the context of executing a sample preparation protocol and/or an assay protocol. An output of the methods of the invention may be beads prepared for execution of an assay protocol. Another output of the methods of the invention may be results of an assay protocol executed using beads. Among the methods described herein are methods of concentrating beads in droplets, methods of washing beads, methods of suspending beads, methods of separating beads, methods of localizing beads within a droplet, methods of forming emulsions in which droplets include beads, methods of loading beads into a droplet operations gap of a droplet actuator, methods of organizing beads in a monolayer, and methods of capturing, trapping or restraining beads.
Abstract:
Droplet actuator for conducting droplet operations, such as droplet transport and droplet dispensing, is provided. In one embodiment, the droplet actuator may include an electrode that is rotationally but not reflectively symmetrical.
Abstract:
The present invention provides a droplet actuator device and methods for multiplexed PCR amplification and detection of target amplicons within a single droplet. The methods of the invention combine quantitative real-time PCR (qPCR) amplification with fluorescence-based sequence specific detection technologies for amplified DNA. In one embodiment, fluorescently-labeled oligonucleotide probes may be used for hybridization-based multiplexed detection of target amplicons. The methods of the invention generally involve combining the necessary reactants to form a PCR-ready droplet and thermal cycling the droplet at temperatures sufficient to result in amplification of one or more target nucleic acids. Fluorescence-based detection techniques may be used for end-point or real-time analysis of DNA amplification. For end-point analysis, the accumulation of a signal, e.g., a fluorescence signal, is measured after the amplification of the target sequence is complete. For real-time analysis, the signal is measured while the amplification reaction is in progress.
Abstract:
The invention is directed to droplet actuator devices and assay methods. The invention includes assay methods of conducting an assay comprising combining a sample with an umbelliferyl derivative, wherein the sample potentially comprises an enzyme capable of cleaving the umbelliferyl derivative and where the umbelliferyl derivative comprises an umbelliferyl core modified with one or more modifying moieties.
Abstract:
A droplet actuator comprising: (a) a base substrate comprising electrodes configured for conducting droplet operations on a droplet operations surface thereof; (b) a droplet comprising one or more beads situated on the droplet operations surface; (c) a barrier arranged in relation to the droplet and the electrodes such that a droplet may be transported away from the beads using one or more droplet operations mediated by one or more of the electrodes while transport of the beads is restrained by a barrier. Related methods and kits are also provided.