Abstract:
A separated MEMS thermal actuator is disclosed which is largely insensitive to creep in the cantilevered beams of the thermal actuator. In the separated MEMS thermal actuator, a inlaid cantilevered drive beam formed in the same plane, but separated from a passive beam by a small gap. Because the inlaid cantilevered drive beam and the passive beam are not directly coupled, any changes in the quiescent position of the inlaid cantilevered drive beam may not be transmitted to the passive beam, if the magnitude of the changes are less than the size of the gap.
Abstract:
A method for providing improved gettering in a vacuum encapsulated device is described. The method includes forming a plurality of small indentation features in a device cavity formed in a lid wafer. The gettering material is then deposited over the indentation features. The indentation features increase the surface area of the getter material, thereby increasing the volume of gas that the getter material can absorb. This may improve the vacuum maintained within the vacuum cavity over the lifetime of the vacuum encapsulated device.
Abstract:
A method for providing improved gettering in a vacuum encapsulated device is described. The method includes forming a plurality of small indentation features in a device cavity formed in a lid wafer. The gettering material is then deposited over the indentation features. The indentation features increase the surface area of the getter material, thereby increasing the volume of gas that the getter material can absorb. This may improve the vacuum maintained within the vacuum cavity over the lifetime of the vacuum encapsulated device.
Abstract:
A method for forming through wafer vias in a substrate uses a Cr/Au seed layer to plate the bottom of a blind trench formed in the front side of a substrate. Thereafter, a reverse plating process uses a forward current to plate the bottom and sides of the blind hole, and a reverse current to de-plate material in or near the top. Using the reverse pulse plating technique, the plating proceeds generally from the bottom of the blind hole to the top. To form the through wafer via, the back side of the substrate is ground or etched away to remove material up to and including the dead-end wall of the blind hole.
Abstract:
A material for bonding a lid wafer to a device wafer, which includes an adhesive substance with rigid particles embedded in the adhesive substance. The rigid particles may be particles or spheres of alumina, silica, or diamond, for example. The adhesive substance may be glass frit, epoxy, glue, cement or solder, for example. When the adhesive is applied and melted, and pressure is applied between the lid wafer and the device wafer, the lid wafer approaches the device wafer until a minimum separation is reached, which is defined by the rigid particles.
Abstract:
Systems and methods for forming an electrostatic MEMS switch include forming a cantilevered beam on a first substrate, forming the electrical contacts on a second substrate, and coupling the two substrates using a hermetic seal. The hermetic seal may be a gold/indium alloy, formed by heating a layer of indium plated over a layer of gold. Electrical access to the electrostatic MEMS switch may be made by forming vias through the thickness of the second substrate.
Abstract:
A multiple switch MEMS structure has a higher resistance, higher durability switch arranged in parallel with a lower resistance, less durable switch. By closing the higher resistance, high durability switch before the lower resistance, less durable switch, the lower resistance, less durable switch is protected from voltage transients and arcing which may otherwise damage the lower resistance, less durable switch. By appropriate selection of dimensions and materials, the high resistance, high durability switch may be assured to close first, as well as open first, thereby also protecting the lower resistance, less durable switch from voltage transients upon opening as well as upon closing.
Abstract:
A material for forming a conductive structure for a MEMS device is described, which is an alloy containing about 0.01% manganese and the remainder nickel. Data shows that the alloy possesses advantageous mechanical and electrical properties. In particular, the sheet resistance of the alloy is actually lower than the sheet resistance of the pure metal. In addition, the alloy may have superior creep and higher recrystallization temperature than the pure metal. It is hypothesized that these advantageous material properties are a result of the larger grain structure existing in the NiMn alloy film compared to the pure nickel metal film. These properties may make the alloy appropriate for applications such as MEMS thermal electrical switches for telecommunications applications.
Abstract:
A micromechanical actuator for sorting hematopoietic stem cells for use in cancer therapies. The actuator operates by diverting cells into one of a number of possible pathways fabricated in the fabrication substrate of the micromechanical actuator, when fluorescence is detected emanating from the cells. The fluorescence results from irradiating the cells with laser light, which excites a fluorescent tag attached to the cell. The micromechanical actuator thereby sorts the cells individually, with an operation rate of 3.3 kHz, however with the massively parallel 1024-fold device described herein, a throughput of 3.3 million events/second is achievable.
Abstract:
A teeter-totter apparatus uses a curved beam to generate a differential output which may be indicative of an acceleration applied to the apparatus. The curved-beam teeter-totter apparatus can be combined with an x-axis and y-axis accelerometer, to produce a tri-axis accelerometer which is sensitive to an acceleration applied in any direction. Damping plates may be added to the accelerometers to reduce unwanted motion.