Abstract:
A consist manager for controlling a consist having a lead locomotive and at least one trailing locomotive. A graphical user interface displays a lead locomotive image and at least one trailing locomotive imagers. The graphical user interfaces allows a user to selectively identify train characteristics of each of the first and second locomotives. The consist manager receives a control command and determines a first power operating mode of the first locomotive and a second power operating mode of the second locomotive as a function of the control command and the identified train characteristics. The consist manager controls the first locomotive according to the first power operating mode and controls the second locomotive according to the second operating mode.
Abstract:
A railroad train is provided and includes a first locomotive having a first locomotive electronic processor, a first locomotive communication device in electrical communication with the first locomotive processor, and a first locomotive operator interface in electrical communication with the first locomotive processor. The railroad train also includes a second locomotive having a second locomotive electronic processor, a second locomotive communication device in electrical communication with the second locomotive processor and the first locomotive communication device, a second locomotive sensor in electrical communication with the second locomotive processor for monitoring the operation of the second locomotive and generating signals indicative of the monitored operations, and a second locomotive controller device in electrical communication with the second locomotive processor for controlling the operation of the second locomotive, with the second locomotive processor receiving the signals indicative of the operation of the second locomotive, determining faults in the operation of the second locomotive, and communicating signals indicative of the faults to the second locomotive communication device for transmission to the first locomotive operator interface via the first locomotive communication device and the first locomotive processor, and with the second locomotive controller device being controllable from the first locomotive interface, wherein faults in the operation of the second locomotive are communicated to the first locomotive operator interface and control actions on the operation of the second locomotive in response to the faults may be effected by an operator on the first locomotive.
Abstract:
A hybrid energy railway vehicle system having a traction motor with a dynamic braking mode of operation for dynamically braking the traction motor and for generating dynamic braking electrical energy and an electrical energy storage system that is in electrical communication with the traction motor and that stores dynamic braking electrical energy generated by the traction motor. The system also has a hybrid energy railway vehicle with a plurality of wheels wherein the traction motor has a motoring mode of operation for driving one of the wheels in response to electrical input energy. A converter selectively provides stored electrical energy from the energy storage system to the traction motor as electrical input energy for driving one or more of wheels. The hybrid energy railway vehicle is optionally equipped computer readable medium having computer executable instructions for controlling the operation of the hybrid energy railway vehicle and a processor configured to control the operation of the railway vehicle as a function of at least one of a plurality of operating modes.
Abstract:
A self-powered railroad system (1700), in one embodiment, comprises a locomotive (1710), a control source (1715), and a plurality of load units (1720A-K and 1730A-G), some of which are railroad vehicles (1720A-K) comprising the components of railroad vehicle (1500) that provide for selective operation in a motoring mode, a coasting mode, or a dynamic braking mode. The self-powered railroad system may also comprise a control source and at least one railroad vehicle controlled by the control source, such as for coupling, uncoupling, and moving to or from a loading dock.
Abstract:
An energy management system for use with a hybrid energy off highway vehicle. The off highway vehicle includes a primary energy source and a power converter driven by the primary energy source for providing primary electric power. A traction bus is coupled to the power converter and carries the primary electric power. A traction drive is connected to the traction bus. The traction drive has a motoring mode in which the traction drive is responsive to the primary electric power for propelling the off highway vehicle. The traction drive has a dynamic braking mode of operation wherein said traction drive generates dynamic braking electrical energy. The energy management system includes an energy management processor for determining a power storage parameter and a power transfer parameter. An energy storage system is connected to the traction bus and is responsive to the energy management processor. The energy storage system selectively stores electrical energy as a function of the power storage parameter and selectively supplying secondary electric power from the stored electrical energy to the traction bus as a function of the power transfer parameter.
Abstract:
A hybrid prolusion system comprising a first energy storage unit operable to supply power to a traction drive motor. A second energy storage unit is coupled with the first energy storage unit to provide additional power on demand to the traction drive motor. An auxiliary power unit (APU) is used to charge the first battery to maintain a desired voltage across the first energy storage unit.
Abstract:
A device network to process signals has target devices, selecting devices that are movable relative to the target devices, and controllers. The controllers are in communication with the target devices and the selecting devices. Each of the selecting devices has a position sensor and an orientation sensor to provide spatial and angular co-ordinates of position and orientation when pointing to a target device and upon receiving a user input. Each of the selecting devices also has a signal processor to generate a control signal having the position and orientation data. This control signal is then transmitted by a transmitter, via a radio frequency channel, to a controller. Upon receiving the control signal, the controller determines whether, for example, a target device has been selected by a selecting device by comparison of the orientation data with a derived orientation based on the position data and the known position of the target devices.
Abstract:
A method and computer program product of limiting sand use in a railroad locomotive sanding system applying sand to railroad rails to enhance adhesion of wheels of a railroad locomotive on a track having a pair of railroad rails, the sanding system including a plurality of sand applicators for each rail for directing sand flow toward the rail and with the locomotive having two trucks carrying the wheels for supporting and propelling the locomotive along the track. The method and computer program product may include steps of automatically controlling a flow of sand applied to the rail by the locomotive sanding system to limit the application of sand to situations in which applying sand to the rail would be effective to increase the adhesion of at least one of the railroad locomotive wheels on the rail by a predetermined incremental amount. The operation of each of the plurality of sand applicators may be independently controlled for selectively operating those sand applicators whose operation will result in at least the predetermined incremental increase in adhesion of the locomotive wheels on the rail, while not operating the other sand applicators so as to limit the amount of sand applied to the track.
Abstract:
The subject disclosure is directed towards detecting malware or possible malware in an input file by allowing the input file to be opened, and by monitoring for one or more behaviors corresponding to the open file that likely indicate malware. Only certain executable files and/or file types opened thereby may be monitored, with various collected event data used for antimalware purposes when improper behavior is observed. Example behaviors include writing of a file to storage, generation of network traffic, injection of a process, running of script, and/or writing system registry data. Telemetry data and/or a sample of the file may be sent to an antimalware service, and malware remediation may be performed. Data (e.g., the collected events) may be distributed to other nodes for use in antimalware detection, e.g., to block execution of a similar file.
Abstract:
A post is generated that identifies different types of activity in a computer system, such as changes to the data in the computer system. The post is generated in a language-neutral way. An activity feed generator generates a language-specific post and distributes it, in an activity feed, to a set of users, based on user preferences. The activity feed generator can also access a security model so that only users with sufficient privileges receive the post in their activity feed.