Abstract:
A user-controlled skylight window or the like in which the user can control the light transmitted through the skylight. A chromogenic filter is under automatic control of a control circuit. A user interface permits the user to set the control circuit for desired lighting. A mechanical shutter is likewise controlled to open or close the skylight under control of the user interface. A lamp within the skylight provides nighttime lighting under user control. The diffuseness of light transmitted through the skylight is improved by modifying the diffuseness of various components of the skylight including the filter. Uses of the filter in a variety of systems and with a variety of controls are disclosed.
Abstract:
A transparent chromogenic panel in which color changes are selectively effectable over predefined areas comprises a pair of facing glass substrates each covered with a conductive layer divided into individual energizeable areas each provided with as set of busbars. An electrochromic electrode layer overlies at least one of the conductive layers. An insulating adhesive sealant spaces apart the substrates and insulates the busbar sets from each other and from exposure to the electrolyte and the electrochromic layer, so that each busbar set may be individually energizeable to effect a color change through a respective one of the individual areas. A passive layer is advantageously superimposed over one of the substrates, its color being chosen so that the color and the transmissivity of the passive layer accommodates the range of color change and transmissivity of the electrochromic layer to maintain the transmitted color of the panel in a warm or neutral shade.
Abstract:
The haze in a conductive tin oxide coating deposited on a substrate, particularly glass, can be reduced by applying, to a desired thickness, a solid-state coating, where the solid-state layer is applied as a precursor liquid to the tin oxide layer, is then dried and/or converted to a solid-state film overlying the conductive tin oxide film on the substrate.
Abstract:
A photochromic device is provided which allows the user to leave the device in a high transmissive state even when exposed to a source of radiation and to control the degree of darkening achieved while exposed to the source of radiation.
Abstract:
Electrochromic devices and processes for preparing the same are provided which do not require a separate process step of ion intercalation by employing an electrochromically-inert reducing or oxidizing additive in the electrochemically active material or the electrolyte of the electrochromic devices.
Abstract:
An electrochromic coating is produced by adding an organic moiety to a solution of an electrochromic precursor, said organic moiety having a decomposition temperature greater than, or a vapor pressure sufficiently low at, the temperature at which solution solvent is removed, such that said organic moiety remains integral with the electrochromic precursor coating on said substrate after said solvent evaporates, and said organic moiety having a decomposition temperature lower than, or a vapor pressure sufficiently high at, the temperature at which said electrochromic precursor coating is converted to an electrochromic coating that said moiety is substantially removed from said coating before or during said conversion.
Abstract:
Briefly, an intelligent label is associated with a good, and includes one or more permanent and irreversible electrochromic indicators that are used to report the condition of that good at selected points in the movement or usage of that good. These electrochromic indicators provide immediate visual information regarding the status of the good without need to interrogate or communicate with the electronics or processor on the intelligent label. In this way, anyone in the shipping or use chain for the good, including the end user consumer, can quickly understand whether the product is meeting shipping and quality standards. If a product fails to meet shipping or quality standards, the particular point where the product failed can be quickly and easily identified, and information can be used to assure the consumer remains safe, while providing essential information for improving the shipping process. It will be understood that the label may take many forms, such as a tag attached to the good, integrated into the packaging for the good, integrated into the good itself, or may even be an information area on a prepaid card for example. The label may also include, for example, print information regarding the good, usage or shipping rules, or address and coded information.
Abstract:
Briefly, an intelligent label is associated with a good, and includes one or more permanent and irreversible electrochromic indicators that are used to report the condition of that good at selected points in the movement or usage of that good. These electrochromic indicators provide immediate visual information regarding the status of the good without need to interrogate or communicate with the electronics or processor on the intelligent label. In this way, anyone in the shipping or use chain for the good, including the end user consumer, can quickly understand whether the product is meeting shipping and quality standards. If a product fails to meet shipping or quality standards, the particular point where the product failed can be quickly and easily identified, and information can be used to assure the consumer remains safe, while providing essential information for improving the shipping process. It will be understood that the label may take many forms, such as a tag attached to the good, integrated into the packaging for the good, integrated into the good itself, or may even be an information area on a prepaid card for example. The label may also include, for example, print information regarding the good, usage or shipping rules, or address and coded information.
Abstract:
This invention focuses on electrooptic devices and in particular on electrochromic (EC) devices with several aspects directed towards automotive EC mirrors and windows. Adhesive compositions are disclosed herein which improve device processing attributes and their performance and durability.
Abstract:
This invention discloses a low cost method to manufacture electrooptic devices at low cost and discloses materials that may be used in fabrication of electrooptic devices.