Abstract:
A three-dimensional inclination angle calculation circuit is provided. The three-dimensional inclination angle calculation circuit includes: X-axis, Y-axis, and Z-axis vibration sensors which change X-axis, Y-axis, and Z-axis electrostatic capacitances according to three-dimensional positions of a measured plane with respect to a reference plane, respectively; X-axis, Y-axis, and Z-axis position value acquisition units which acquire X-axis, Y-axis, and Z-axis position values corresponding to the X-axis, Y-axis, and Z-axis electrostatic capacitances, respectively; and an inclination angle calculation unit which calculates an inclination angle of the measured plane with respect to the reference plane based on the X-axis, Y-axis, and Z-axis position values. Accordingly, it is possible to very easily calculate an inclination angle according to a three-dimensional position of a to-be-measured apparatus by using an existing vibration sensor.
Abstract:
Disclosed is a micro electro mechanical system (MEMS) microphone including: a substrate; an acoustic chamber formed by processing the substrate; a lower electrode formed on the acoustic chamber and fixed to the substrate; a diaphragm formed over the lower electrode so as to be spaced apart from the lower electrode by a predetermined interval; and a diaphragm discharge hole formed at a central portion of the diaphragm. According to an exemplary embodiment of the present disclosure, attenuation generated by an air layer between the diaphragm and the lower electrode in a MEMS microphone may be effectively reduced, thereby making it possible to obtain high sensitivity characteristics and reduce a time and a cost required for removing a sacrificial layer between the diaphragm and the lower electrode.
Abstract:
A conventional capacitive accelerometer has a limitation in reducing a distance between a sensing electrode and a reference electrode, and requires a complex process and a separate method of correcting a clearance difference caused by a process error. However, the capacitive accelerometer of the present invention has high sensitivity, can be simply manufactured by maintaining a very narrow distance between a reference electrode and a sensing electrode, and can make it unnecessary to individually correct each manufactured accelerometer by removing or drastically reducing a functional difference due to a process error.
Abstract:
Provided are a Micro Electro-Mechanical System (MEMS) package and a method of packaging the MEMS package. The MEMS package includes: a MEMS device including MEMS structures formed on a substrate, first pad electrodes driving the MEMS structures, first sealing parts formed at an edge of the substrate, and connectors formed on the first pad electrodes and the first sealing parts; and a MEMS driving electronic device including second pad electrodes and second sealing parts respectively corresponding to the first pad electrodes and the first sealing parts to be sealed with and bonded to the MEMS device through the connectors to form an air gap having a predetermined width.
Abstract:
There is provided a micromachined sensor for measuring a vibration, based on silicone micromachining technology, in which a conductor having elasticity is connected to masses moving due to a force generated by the vibration and the vibration is measured by using induced electromotive force generated due to the conductor moving in a magnetic field.
Abstract:
A MEMS switch and a method of manufacturing the same are disclosed. The MEMS switch includes: a substrate including a trench, a ground line and a signal line having an opened portion; a moving plate separated from the substrate at a predetermined space and including a contact member for connecting an electrode plate and the opened portion and having a deep corrugate to insert the trench; and a supporting member for supporting the moving plate. Such a MEMS switch prevents the thermal expansion and the stiction problem.
Abstract:
Disclosed are a MEMS microphone and a method of manufacturing the same. The MEMS microphone includes: a substrate; a rear acoustic chamber formed inside a front surface of the substrate; a vibrating plate formed on the substrate and having an exhaust hole; a fixed electrode formed on the vibrating plate; and a fixed electrode support supported by a bottom of the rear acoustic chamber and connected to the fixed electrode through the exhaust hole.
Abstract:
Provided is a small piezoelectric power generator applied to a wireless sensor network system of a tire pressure monitoring system (TPMS) for monitoring an internal environment of a tire such as variation in air pressure in the tire. In particular, when the system, in which air pressure, temperature and acceleration sensors are mounted, installed in the tire is operated in the TPMS for an automobile, a small piezoelectric power generator for the TPMS can be used as a power source in place of a conventional battery. The piezoelectric power generator includes a substrate having an electrode for transmitting power to the exterior, a metal plate formed on the substrate, and a piezoelectric body disposed on the metal plate and transmitting the power generated by a piezoelectric material to the electrode.
Abstract:
There is provided a bidirectional readout circuit for detecting direction and amplitude of an oscillation sensed at a capacitive microelectromechanical system (MEMS) accelerometer, the bidirectional readout circuit converting capacitance changes of the capacitive MEMS accelerometer into a time change amount by using high resolution capacitance-to-time conversion technology and outputting the time change amount as the direction and the amplitude of the oscillation by using time-to-digital conversion (TDC) technology, thereby detecting not only the amplitude of the oscillation but also the direction thereof, which is capable of being applied to various MEMS sensors.
Abstract:
A three-dimensional inclination angle calculation circuit is provided. The three-dimensional inclination angle calculation circuit includes: X-axis, Y-axis, and Z-axis vibration sensors which change X-axis, Y-axis, and Z-axis electrostatic capacitances according to three-dimensional positions of a measured plane with respect to a reference plane, respectively; X-axis, Y-axis, and Z-axis position value acquisition units which acquire X-axis, Y-axis, and Z-axis position values corresponding to the X-axis, Y-axis, and Z-axis electrostatic capacitances, respectively; and an inclination angle calculation unit which calculates an inclination angle of the measured plane with respect to the reference plane based on the X-axis, Y-axis, and Z-axis position values. Accordingly, it is possible to very easily calculate an inclination angle according to a three-dimensional position of a to-be-measured apparatus by using an existing vibration sensor.