Abstract:
A display medium comprises: a pair of electrodes to which a voltage is applied; and a liquid crystal layer stack provided between the pair of electrodes. The liquid crystal layer stack contains a first liquid crystal layer having a first liquid crystal that undergoes transition into a specific alignment state in response to the voltage applied to the electrodes becoming equal to or greater than a first voltage value, and a second liquid crystal layer having a second liquid crystal that undergoes transition into the specific alignment state in response to the voltage becoming equal to or greater than a second voltage value. The second voltage value is greater than the first voltage value, and the second liquid crystal has a higher isotropic phase transition temperature than the first liquid crystal.
Abstract:
A display medium comprises: a pair of electrodes to which a voltage is applied; a cholesteric liquid crystal layer provided between the pair of electrodes, wherein an alignment state of the cholesteric liquid crystal layer changes depending on a strength of an electric field generated upon application of a voltage to the pair of electrodes; and an intervening layer provided in an area between a part of the cholesteric liquid crystal layer and one of the pair of electrodes such that a strength of an electric field generated in the part of the cholesteric liquid crystal layer upon application of a voltage to the pair of electrodes is different from a strength of an electric field generated in another part of the cholesteric liquid crystal layer.
Abstract:
A liquid crystal-containing composition and a liquid crystal display device including the same, the liquid crystal-containing composition including a cholesteric liquid crystal and microcapsules containing the cholesteric liquid crystal, and having a wall component comprising at least one selected from the group consisting of polyurethane and polyurea, the wall component further including a first isocyanurate component having a cyclo ring structure and a second isocyanate component other than the first isocyanurate component.
Abstract:
A liquid crystal-containing composition includes a cholesteric liquid crystal, a polymer, and concave and convex portions located at the interface between a region including the cholesteric liquid crystal and a region including the polymer.
Abstract:
A method for producing a carbon nanotube thin film comprises a step of dropping a mixed liquid containing carbon nanotubes and an ionic liquid onto a liquid surface of a film forming liquid to spread the carbon nanotubes on the liquid surface.
Abstract:
The present invention provides a display medium which prevents a decrease in reflectance during storage at high temperatures, and a writing apparatus using the display medium. A photoconductive layer 24, a selective light transmission layer 22, and a liquid crystal layer 20 are laminated between substrates 12 and 14, which have electrodes 16 and 18, respectively, to form a display medium 10. The selective light transmission layer 22 as a color layer is composed of a deionized material. The ion concentration of the selective light transmission layer 22 is controlled to be within a predetermined range.
Abstract:
A liquid crystal-containing composition according to the present invention includes a cholesteric liquid crystal, a polymer, and particles having hydrophobic surfaces. The particles having hydrophobic surfaces are at the interface between the region containing the cholesteric liquid crystal and the region containing the polymer.
Abstract:
An electron beam generator device includes a base body having a conductive surface and a electron-emission electrode having a carbon nanotube structure on the conductive surface of the substrate. The carbon nanotube structure constitutes a network structure which has plural carbon nanotubes and a crosslinked part including a chemical bond of plural functional groups. The chemical bond connects one end of one of the carbon nanotubes to another one of the carbon nanotubes.A method for producing an electron beam generator device, includes applying plural carbon nanotubes each having a functional group onto a conductive surface of a base body, and crosslinking the functional groups with a chemical bond to form a crosslinked part, thereby forming a carbon nanotube structure constituting a network structure having plural carbon nanotubes electrically connected to each other.
Abstract:
Provided are a gas decomposing unit and an electrode for a fuel cell capable of stably supporting a gas decomposing catalyst. A gas decomposing unit and an electrode for a fuel cell each including: a carbon nanotube structure having a mesh structure in which functional groups bonded to plural carbon nanotubes are chemically bonded to mutually cross-link the plural carbon nanotubes; and a gas decomposing catalyst supported on the carbon nanotube structure. A method of manufacturing a gas decomposing unit characterized by including: an applying step of applying, to the surface of a substrate, a solution containing plural carbon nanotubes to which functional groups are bonded; a cross-linking step of chemically bonding the functional groups to build a mesh structure in which the plural carbon nanotubes mutually cross-link; and a supporting step of forming the carbon nanotube structure supporting a gas decomposing catalyst.
Abstract:
A method of producing an organic-inorganic composite insulating material for electronic element comprises subjecting a mixture of an organic polymer or its solution and a metal alkoxide or its solution as a starting material to sol-gel reaction of the metal alkoxide in the presence of the organic polymer.