Techniques for Optimizing Nanotips Derived from Frozen Taylor Cones
    4.
    发明申请
    Techniques for Optimizing Nanotips Derived from Frozen Taylor Cones 有权
    用于优化来自冷冻泰勒锥的纳米芯片的技术

    公开(公告)号:US20170076901A1

    公开(公告)日:2017-03-16

    申请号:US15361911

    申请日:2016-11-28

    Applicant: Gregory Hirsch

    Inventor: Gregory Hirsch

    Abstract: Optimization techniques are disclosed for producing sharp and stable tips/nanotips relying on liquid Taylor cones created from electrically conductive materials with high melting points. A wire substrate of such a material with a preform end in the shape of a regular or concave cone, is first melted with a focused laser beam. Under the influence of a high positive potential, a Taylor cone in a liquid/molten state is formed at that end. The cone is then quenched upon cessation of the laser power, thus freezing the Taylor cone. The tip of the frozen Taylor cone is reheated by the laser to allow its precise localized melting and shaping. Tips thus obtained yield desirable end-forms suitable as electron field emission sources for a variety of applications. In-situ regeneration of the tip is readily accomplished. These tips can also be employed as regenerable bright ion sources using field ionization/desorption of introduced chemical species.

    Abstract translation: 公开了优化技术,用于产生依赖于由具有高熔点的导电材料产生的液体泰勒锥的尖锐和稳定的尖端/纳米片。 首先用聚焦激光束熔化这种具有预制件端部为规则的或凹形的形状的材料的线基材。 在高正电位的影响下,在此端形成液态/熔融状态的泰勒锥。 然后在停止激光功率时,锥体被淬火,从而冻结泰勒锥。 冷冻泰勒锥的尖端被激光器重新加热,以允许其精确的局部熔化和成型。 如此获得的提示产生适合作为各种应用的电子场发射源的期望的终端形式。 尖端的原位再生容易实现。 这些尖端也可以用作引入化学物质的场电离/解吸的可再生的明亮离子源。

    Integrated vacuum microelectronic structure and manufacturing method thereof
    5.
    发明授权
    Integrated vacuum microelectronic structure and manufacturing method thereof 有权
    集成真空微电子结构及其制造方法

    公开(公告)号:US09496392B2

    公开(公告)日:2016-11-15

    申请号:US14667215

    申请日:2015-03-24

    Abstract: An integrated vacuum microelectronic structure is described as having a highly doped semiconductor substrate, a first insulating layer placed above said doped semiconductor substrate, a first conductive layer placed above said first insulating layer, a second insulating layer placed above said first conductive layer, a vacuum trench formed within said first and second insulating layers and extending to the highly doped semiconductor substrate, a second conductive layer placed above said vacuum trench and acting as a cathode, a third metal layer placed under said highly doped semiconductor substrate and acting as an anode, said second conductive layer is placed adjacent to the upper edge of said vacuum trench, the first conductive layer is separated from said vacuum trench by portions of said second insulating layer and is in electrical contact with said second conductive layer.

    Abstract translation: 集成的真空微电子结构被描述为具有高度掺杂的半导体衬底,放置在所述掺杂半导体衬底之上的第一绝缘层,放置在所述第一绝缘层之上的第一导电层,放置在所述第一导电层上方的第二绝缘层,真空 形成在所述第一和第二绝缘层内并延伸到高掺杂半导体衬底的第二导电层,置于所述真空沟槽之上并用作阴极的第二导电层,置于所述高掺杂半导体衬底之下并用作阳极的第三金属层, 所述第二导电层邻近所述真空沟槽的上边缘放置,所述第一导电层通过所述第二绝缘层的一部分与所述真空沟槽分离,并与所述第二导电层电接触。

    THREE ELECTRODE CIRCUIT ELEMENT
    7.
    发明申请
    THREE ELECTRODE CIRCUIT ELEMENT 审中-公开
    三电极电路元件

    公开(公告)号:US20150170864A1

    公开(公告)日:2015-06-18

    申请号:US14297408

    申请日:2014-06-05

    CPC classification number: H01J1/3044

    Abstract: In an illustrative embodiment, a three electrode circuit element comprises an insulating material, a cavity in the insulating material, first and second electrodes spaced apart in the cavity by a distance small enough that electron emission is caused when suitable operating voltages are applied to the first and second electrodes, and a gate electrode near one of the first and second electrodes. A voltage applied to the gate electrode can control current flow between the first and second electrodes. The circuit element may be realized in a planar structure in which the electrodes are formed in substantially the same plane; or it may be a multi-layer device in which some or all of the electrodes are in separate layers of conductive material. Methods for forming the circuit element are also disclosed. Illustrative applications of the three electrode circuit element to provide standard circuit functions are also disclosed.

    Abstract translation: 在说明性实施例中,三电极电路元件包括绝缘材料,绝缘材料中的空腔,在空腔中间隔开距离足够小的距离的电极发射的第一和第二电极,当适当的工作电压施加到第一 和第二电极,以及靠近第一和第二电极之一的栅电极。 施加到栅电极的电压可以控制第一和第二电极之间的电流。 电路元件可以以平面结构实现,其中电极形成在基本相同的平面中; 或者它可以是其中部分或全部电极处于分开的导电材料层的多层器件。 还公开了形成电路元件的方法。 还公开了三电极电路元件提供标准电路功能的说明性应用。

    METHOD FOR MANUFACTURING NANOSTRUCTURES AND CATHODE FOR FIELD EMISSION LIGHTING ARRANGEMENT
    10.
    发明申请
    METHOD FOR MANUFACTURING NANOSTRUCTURES AND CATHODE FOR FIELD EMISSION LIGHTING ARRANGEMENT 有权
    用于制造场发射照明装置的纳米结构和阴极的方法

    公开(公告)号:US20140346976A1

    公开(公告)日:2014-11-27

    申请号:US14345439

    申请日:2012-10-05

    Abstract: The present invention relates to a method for manufacturing a plurality of nanostructures comprising the steps of providing a plurality of protruding base structures (104) arranged on a surface of a first substrate (102), providing a seed layer mixture, comprising a solvent/dispersant and a seed material, in contact with the protruding base structures, providing a second substrate arranged in parallel with the first substrate adjacent to the protruding base structures, thereby enclosing a majority of the seed layer mixture between the first and second substrates, evaporating the solvent, thereby forming a seed layer (110) comprising the seed material on the protruding base structures, removing the second substrate, providing a growth mixture, comprising a growth agent, in contact with the seed layer, and controlling the temperature of the growth mixture so that nanostructures (114) are formed on the seed layer via chemical reaction in presence of the growth agent.

    Abstract translation: 本发明涉及一种用于制造多个纳米结构的方法,包括以下步骤:提供布置在第一基底(102)的表面上的多个突出的基底结构(104),提供种子层混合物,其包含溶剂/分散剂 以及与所述突出的基部结构接触的种子材料,提供与所述第一基板平行布置的与所述突出的基部结构相邻的第二基板,从而在所述第一和第二基板之间封闭所述种子层混合物的大部分,蒸发所述溶剂 ,从而在突出的基部结构上形成包含种子材料的种子层(110),去除第二基底,提供包含与种子层接触的生长剂并且控制生长混合物的温度的生长混合物 纳米结构(114)通过生长剂存在下的化学反应在种子层上形成。

Patent Agency Ranking