Abstract:
The present invention relates to an optical plane waveguide capable of reducing the coupling loss with respect to an optical fiber and achieving downsizing and higher integration. The optical plane waveguide according to the present invention comprises a core region provided in a substrate, and one or more side core regions provided along the tip portion of the core region. The core region and the side core regions have a higher refractive index than the substrate. Moreover, end faces of the core region and the side core regions coincide with the end face of the substrate and function as a light input/output port for signal light. In particular, since the side core regions are provided along the core region and positioned at a peripheral portion of the substrate where the end face of the substrate is included. According to the configuration, the mode field diameter of signal light can be enlarged at least in a direction parallel to a surface of the substrate with a single mode condition satisfied, whereby the coupling loss with respect to the optical fiber can be reduced.
Abstract:
The present invention relates to an optical transmission line, applicable to Wave Division Multiplexing (WDM) transmission, having a structure for restraining optical transmission characteristics from deteriorating due to each of the occurrence of nonlinear optical phenomena and the wavelength dispersion. This optical transmission line comprises, at least, a first optical fiber having, as characteristics at the predetermined operating wavelength, a first effective area and a first dispersion slope; and a second optical fiber having, as characteristics at the predetermined operating wavelength, a second effective area smaller than the first effective area and a second dispersion slope smaller than the first dispersion slope. In particular, the second optical fiber contributes to suppressing the deterioration in its optical transmission characteristics in the whole optical transmission line.
Abstract:
The present invention relates to an optical communications system that allows improving OSNR while suppressing the power increase of pumping light for distributed Raman amplification. In the optical communications system, an optical fiber is laid in a transmission section between a transmitter station (or repeater station) and a receiver station (or repeater station), and optical signals are transmitted from the transmitter station to the receiver station via the optical fiber. In the optical communications system, pumping light for Raman amplification, outputted by a pumping light source provided in the receiver station, is fed into the optical fiber via an optical coupler, and the optical signals are distributed-Raman-amplified in the optical fiber. The transmission loss and the effective area of the optical fiber satisfy, at the wavelength of 1550 nm, a predetermined relationship.
Abstract:
The present invention relates to a measuring method and a sensor unit of measuring temperature distribution of an object by using an optical fiber sensing technology of BOCDA system. In the measuring method, an optical fiber that functions as a BOCDA-type optical fiber sensor is disposed two-dimensionally or three-dimensionally with respect to a predetermined measurement region of the object, and thereby the temperature distribution of the object can be measured at a high speed and a high accuracy, in the predetermined measurement region configuring a surface or space where the optical fiber is disposed.
Abstract:
The present invention relates to an optical communication system or the like, which comprises a multicore fiber with a plurality of cores that are two-dimensionally arrayed in a cross-section thereof. In the optical communication system, an arrangement converter, provided between a multicore fiber and an Optical Line Terminal (OLT) having light emitting areas arrayed one-dimensionally, comprises first and second end faces, and a plurality of optical waveguides. The optical waveguides are disposed such that one of the end faces coincides with the first end face and the other end face coincides with the second end face. In particular, the optical waveguide end face array on the first end face and the optical waveguide end face array on the second face are different, contributing to an optical link between network resources of different types.
Abstract:
The present invention relates to an optical cable with a structure for improving a durability performance. The optical cable comprises, as a basic structure: a coated optical fiber, and a cable jacket covering an outer periphery of the coated optical fiber. The coated optical fiber is constituted by a glass fiber and a coating layer of an ultraviolet curing resin. To realize excellent impact resistance as durability performance, the coating layer of the coated optical fiber includes a first coating with a Young's modulus of 200 MPa or more. Meanwhile, the cable jacket is comprised of a thermoplastic resin that does not contain any halogens. The cable jacket has a thickness of 0.7 mm or more, a flame retardancy of V2 or more according to UL Standards, and a Young's modulus equal to or greater than that of the first coating.
Abstract:
The present invention relates to, for example, a method of easily manufacturing an optical fiber having any refractive index profile with fewer kinds of rods, and an optical fiber is manufactured by preparing a plurality of rods including at least two kinds of rods having different refractive indexes from each other, bundling rods selected from the plurality of rods to construct two or more rod units, producing a preform including a region in which the two or more rod units are combined so as to have a cross-sectional shape having rotational symmetry of order 2 or more, and manufacturing an optical fiber by drawing the preform.
Abstract:
The present invention provides an optical branching device and an optical communication system which are easy to connect with optical fibers. In the optical branching device, when light emitted from an optical fiber in a front stage is incident on an entrance port of a multicore optical fiber, the light propagates through a first core and then is distributed from the first core to four second cores by core-to-core crosstalk between the first and second cores. The light beams distributed to the four second cores propagate through the respective cores and are emitted to four optical waveguides optically coupled core-to-core thereto within a fan-out part at exit ports.
Abstract:
The present invention relates to an optical fiber cable incorporating a multi-core fiber provided with a plurality of cores and a cladding region. The optical fiber cable has a jacket covering the multi-core fiber. The multi-core fiber is arranged so that a hold wrap holds the cores in a state in which they are provided with a bend of not more than a fixed radius of curvature, in order to reduce crosstalk between the cores.
Abstract:
The present invention relates to a multicore optical fiber having a structure for effectively inhibiting polarization mode dispersion from increasing, and the multicore optical fiber comprises a plurality of multicore units and a cladding region integrally covering the plurality of multicore units while separating the multicore units from each other. Each of the plurality of multicore units includes a plurality of core regions arranged such as to construct a predetermined core arrangement structure on a cross section orthogonal to an axis. The core arrangement structure of each multicore unit on the cross section has such a rotational symmetry as to coincide with the unrotated core arrangement structure at least three times while rotating by 360° about a center of the multicore unit, thereby reducing the structural asymmetry of each multicore unit. This lowers the structural birefringence in each multicore unit, thereby inhibiting the polarization mode dispersion from increasing in the multicore optical fiber.