Abstract:
Systems, methods, and processor executable code for high quality wide-range multi-layer image compression of a sequence of video images. A non-transient electronic storage media stores the processor executable code configured and is capable of causing one or more processors to compress a sequence of digitized video images. The method includes generating a hierarchy of processed images from a digitized video image, determining a plurality of regions within each processed image, each region being selected based on lossless coding efficiency; and applying a lossless variable-length coding independently to each such region.
Abstract:
Systems, methods, and computer programs for high quality wide-range multi-layer image compression coding, including consistent ubiquitous use of floating point values in essentially all computations; an adjustable floating-point deadband; use of an optimal band-split filter; use of entire SNR layers at lower resolution levels; targeting of specific SNR layers to specific quality improvements; concentration of coding bits in regions of interest in targeted band-split and SNR layers; use of statically-assigned targets for high-pass and/or for SNR layers; improved SNR by using a lower quantization value for regions of an image showing a higher compression coding error; application of non-linear functions of color when computing difference values when creating an SNR layer; use of finer overall quantization at lower resolution levels with regional quantization scaling; removal of source image noise before motion-compensated compression or film steadying; use of one or more full-range low bands; use of alternate quantization control images for SNR bands and other high resolution enhancing bands; application of lossless variable-length coding using adaptive regions; use of a folder and file structure for layers of bits; and a method of inserting new intra frames by counting the number of bits needed for a motion compensated frame.
Abstract:
A method and apparatus for image compression using temporal and resolution layering of compressed image frames, and which provides encryption and watermarking capabilities. In particular, layered compression allows a form of modularized decomposition of an image that supports flexible encryption and watermarking techniques. Using layered compression, the base layer and various internal components of the base layer can be used to encrypt a compressed layered movie data stream. By using such a layered subset of the bits, the entire picture stream can be made unrecognizable by encrypting only a small fraction of the bits of the entire stream. A variety of encryption algorithms and strengths can be applied to various portions of the layered stream, including enhancement layers. Encryption algorithms or keys can be changed at each slice boundary as well, to provide greater intertwining of the encryption and the picture stream. Watermarking tracks lost or stolen copies back to the source, so that the nature of the method of theft can be determined and so that those involved in a theft can be identified. Watermarking preferably uses low order bits in certain coefficients in certain frames of a layered compression movie stream to provide reliable identification while being invisible or nearly invisible to the eye. An enhancement layer can also have its own unique identifying watermark structure.