Abstract:
Embodiments of the present invention provide an apparatus suitable for determining properties of in vivo tissue. An illumination system communicates light at a plurality of broadband ranges to an optical probe, which can comprise a flexible probe. Light homogenizers and mode scramblers can be employed in some embodiments. The optical probe can physically contact the tissue, or can be maintained separate from the tissue. The optical probe receives light from the illumination system and transmits it to tissue, and receives light diffusely reflected in response to the broadband light, emitted from the in vivo tissue by fluorescence thereof in response to the broadband light, or a combination thereof. The optical probe can communicate the light to a spectrograph which produces a signal representative of the spectral properties of the light. An analysis system determines a property of the in vivo tissue from the spectral properties.
Abstract:
The present invention provides a method of determining disease state in an individual. A portion of the tissue of the individual is illuminated with excitation light, then light emitted by the tissue due to fluorescence of a chemical in the tissue responsive to the excitation light is detected. The HbA1c or FPG measurement of the individual (or other secondary indication of disease state) can also be determined. A model combining the tissue fluorescence and one or more of the secondary indications can be used to determine the disease state of the individual. In some embodiments, the tissue fluorescence can be used as an initial screen, and the combination with secondary indications only made for those individuals for whom the fluorescence screen indicates an increased likelihood of disease.
Abstract:
A method of determining a measure of a tissue state (e.g., glycation end-product or disease state) in an individual. A portion of the tissue of the individual is illuminated with excitation light, then light emitted by the tissue due to fluorescence of a chemical with the tissue responsive to the excitation light is detected. The detected light can be combined with a model relating fluorescence with a measure of tissue state to determine a tissue state. The invention can comprise single wavelength excitation light, scanning of excitation light (illuminating the tissue at a plurality of wavelengths), detection at a single wavelength, scanning of detection wavelengths (detecting emitted light at a plurality of wavelengths), and combinations thereof. The invention also can comprise correction techniques that reduce determination errors due to detection of light other than that from fluorescence of a chemical in the tissue. For example, the reflectance of the tissue can lead to errors if appropriate correction is not employed. The invention can also comprise a variety of models relating fluorescence to a measure of tissue state, including a variety of methods for generating such models. Other biologic information can be used in combination with the fluorescence properties to aid in the determination of a measure of tissue state. The invention also comprises apparatuses suitable for carrying out the method, including appropriate light sources, detectors, and models (for example, implemented on computers) used to relate detected fluorescence and a measure of tissue state.
Abstract:
The present invention provides improved methods and apparatuses for accurate measurements using interferometers. A functional relationship between the optical path difference and time is determined from a reference signal from an interferometer. The times at which the interferometer had specific optical path differences can be determined from the functional relationship. Those times can then be used to select times at which the spectroscopic signal from the interferometer was produced at the specific optical path differences. The invention can be applied, as examples, to maintain instrument calibration, and to transfer or compare calibrations or measurements across different interferometers.
Abstract:
The present invention relates generally to non-invasive methods and apparatuses for determining analyte properties of a subject and identity characteristics of a subject. Embodiments of the present invention provide analyte property determination and identity determination or verification from the same spectroscopic information, making unauthorized use or misleading results less likely that in systems that include separate analyte and identity determinations. The invention can be used to control and monitor individuals accessing controlled environments.
Abstract:
An apparatus and method for non-invasive determination of attributes of human tissue by quantitative infrared spectroscopy. The system includes subsystems optimized to contend with the complexities of the tissue spectrum, high signal-to-noise ratio and photometric accuracy requirements, tissue sampling errors, calibration maintenance problems, and calibration transfer problems. The subsystems include an illumination subsystem, a tissue sampling subsystem, a spectrometer subsystem, a data acquisition subsystem, and a processing subsystem. The invention is applicable, as examples, to determining the concentration or change of concentration of alcohol in human tissue.
Abstract:
The present invention provides improved methods and apparatuses for accurate measurements using interferometers. A functional relationship between the optical path difference and time is determined from a reference signal from an interferometer. The times at which the interferometer had specific optical path differences can be determined from the functional relationship. Those times can then be used to select times at which the spectroscopic signal from the interferometer was produced at the specific optical path differences. The invention can be applied, as examples, to maintain instrument calibration, and to transfer or compare calibrations or measurements across different interferometers.
Abstract:
Methods and apparatuses of determining the pH of a sample. A method can comprise determining an infrared spectrum of the sample, and determining the hemoglobin concentration of the sample. The hemoglobin concentration and the infrared spectrum can then be used to determine the pH of the sample. In some embodiments, the hemoglobin concentration can be used to select an model relating infrared spectra to pH that is applicable at the determined hemoglobin concentration. In other embodiments, a model relating hemoglobin concentration and infrared spectra to pH can be used. An apparatus according to the present invention can comprise an illumination system, adapted to supply radiation to a sample; a collection system, adapted to collect radiation expressed from the sample responsive to the incident radiation; and an analysis system, adapted to relate information about the incident radiation, the expressed radiation, and the hemoglobin concentration of the sample to pH.
Abstract:
A vertical cavity surface-emitting laser (VCSEL) package utilized as a laser reference for use in interferometry. The primary disadvantage of VCSELs, in terms of interferometry, has been found to be the relatively poor wavenumber stability of the beam. The present invention is a method and apparatus that makes viable a VCSEL package suitable for use as a reference in interferometry. The VCSEL package incorporates current control, temperature control and an algorithm for correcting wavenumber drift. The algorithm is derived from spectroscopic analysis of a reference sample having a known spectrum and comparing the generated spectrum to the known spectrum.