Abstract:
A cylinder block as a main part of an engine block includes a cylinder barrel assembly block, a skeleton-like frame surrounding the outer periphery of the cylinder barrel assembly block and a plate-like rigid film member, within a fluid passage in the skeleton-like frame. The skeleton-like frame is integrally joined to the outer surfaces of left and right side walls of the assembly block along the crankshaft axis and includes crossbeam bone members, longitudinal beam bone members and post bone members which are rigid and unitarily assembled into a three-dimensional latticework structure. A cylinder head is integrally coupled to the deck surface of the cylinder block and a lower case is integrally coupled to the lower surface of the cylinder block, lateral outer surfaces of the block and lower case along the crankshaft axis being formed flush with each other in parallel with the cylinder bore axis. The lower case includes a lower case frame of three-dimensional latticework structure and rigid film members at least on the lateral outer surfaces of the lower case frame along the crankshaft axis. Moreover, the lower case is secured to the lower surface of the cylinder block by bolts and an oil pan is floatingly carried on the lower surface of the lower case via resilient members. The cylinder block has at its one end surface along the crankshaft axis a square, transmission mating surface and a divergent bulged portion extending from a rear part of the cylinder block toward the mating surface.
Abstract:
A hydrostatically operated continuously variable transmission includes a cylinder block centrally coupled to a transmission shaft coupled to an engine, a swash-plate-type axial-piston hydraulic pump having a group of pump plungers, a hydraulic motor having a group of motor plungers, and a closed hydraulic circuit by which the hydraulic pump and the hydraulic motor are interconnected. The groups of pump and motor plungers are disposed in annular patterns in the cylinder block, and disposed concentrically such that one of the groups surrounds the other group. The plunger groups are positionally displaced in the circumferential direction of the cylinder block such that a circle inscribed in said one group passes through the other group.
Abstract:
A valve operating mechanism for operating a single valve of a particular cylinder of an internal combustion engine includes a camshaft rotatable in synchronism with rotation of the internal combustion engine and having at least one cam, and a plurality of cam followers, one of which slidably engages the cam for selectively operating the valves according to a cam profile of the cam. The cam followers are selectively interconnected and disconnected to operate the valve differently in different speed ranges of the internal combustion engine. In different embodiments, the camshaft has an annular raised portion and low- and high-speed cams, or low-, medium-, and high-speed cams, or an annular raised portion and a cam, and the cam followers are held in sliding contact with these raised portion and cams. The valve is selectively kept inoperative by the raised portion and operated in low- and high-speed ranges by the low- and high-speed cams, or selectively operated in low-, medium-, and high-speed ranges by the low-, medium-, and high-speed cams, or selectively kept inoperative by the raised portion and operated in a high-speed range by the cam.
Abstract:
A valve operating mechanism includes a camshaft rotatable in synchronism with rotation of an internal combustion engine and having a plurality of cams of different cam profiles. First, second, and third rocker arms are held in sliding contact with the cams, respectively, for operating the valves according to the cam profiles of the cams. The rocker arms are selectively interconnected and disconnected by first and second selective couplings to operate the valves at different valve timings in low, medium, and high speed ranges of the internal combustion engine.
Abstract:
A motorcycle having an engine with a turbo-supercharger is disclosed herein. A rear fork is pivoted to the frame member for vertical oscillation and the supercharger is disposed at the back of the engine below the pivot point of the rear fork relative to the frame member so that it can be installed in an exposed manner for effective cooling and protected from contact with other obstacles without interference with other members.
Abstract:
An exhaust manifold device for an engine including at least one pair of cylinders arranged substantially in the form of a V and a turbosupercharger driven with exhaust gases of the cylinders to supply compressed air thereto. The exhaust manifold device comprises a pair of exhaust gas inlet members for receiving the exhaust gases, the inlet members being connected integrally with either of the cylinders, a pair of communication members for conducting the exhaust gases, the communication members having the longitudinal lengths thereof variable and either ends thereof connected with either of the inlet members, and an exhaust gas collecting member for collecting the exhaust gases to supply same to the turbosupercharger, the collecting member being connected with the respective other ends of the communication members.In hot temperature operation, the thermal expansion of the exhaust manifold device can be effectively absorbed, thus eliminating undue stresses.
Abstract:
A motorcycle having an engine with a turbo-supercharger in which the engine is mounted on a body frame between front and rear wheels. A first and a second muffler are disposed on the opposite sides of the rear wheel. An exhaust pipe extending from the engine is connected to the first muffler. The supercharger has a turbine disposed in the exhaust pipe so that it is driven by exhaust gas flowing through the exhaust pipe. A waste pipe is branched from the exhaust pipe at a position upstream of the turbine and is connected to the second muffler for discharging a part of exhaust gas while bypassing the turbine. With this arrangement, layout of the exhaust system can be effected neatly to provide a good appearance as well as a good balance in weight-distribution and in banking angle of the motorcycle.
Abstract:
A residual gas control apparatus for internal combustion engines of the type including a main combustion chamber connected through a torch passage to an auxiliary combustion chamber having a spark plug, the residual gas control including a partial partition dividing the auxiliary combustion chamber into a first zone exposed to the spark plug and a second zone exposed to the torch passage, there being openings connecting the two zones, the partition and openings serving to control the percentages of residual gas in the two zones so as to produce optimum ignition and reduce NOx generation, and also to minimize turbulence in the vicinity of the spark plug.
Abstract:
A hydraulic circuit for moving a heavy article or counterweight is provided which includes a cylinder, a source of hydraulic pressure for supplying oil to the cylinder, and a bypass valve provided in a conduit for connecting the source to the cylinder. The bypass valve drains part of the oil supplied to the conduit when the pressure in the conduit drops below a predetermined value so as to smoothly move the heavy weight from first position to second position without shock.
Abstract:
An information recording medium 100 according to one aspect of the present invention includes a disc substrate 1 formed by a resin, and a thickness thereof in a data area 102 is 0.2 mm or less. The information recording medium 100 includes a step 110 in an inner periphery area 101, the step having a height of 1 mm or more and 3 mm or less. The step 110 includes an acute-angle edge portion 111 used for positioning a center of the information recording medium 100 when spinning the information recording medium 100; and an angle θ of an inner side of a cross section of the acute-angle edge portion 111 is 50 degrees or more and 80 degrees or less.