Abstract:
A broadband tuner includes a tracking filter with calibration to compensate for component errors and drift. The filters use off-die inductors that are preferably within a system-in-package (SIP) with other critical tuner components, which produces a highly integrated tuner front end with high Q filters within a single package. High voltage varactors with a large tuning range can be used for variable capacitors. The integration of the tuner into a SIP allows the tuner design to be optimized for cost and performance while keeping the critical RF layout requirements within the tuner. A configurable tuner front end enables modes for low noise, high linearity, good input return loss (S11) across the entire RF band, and applying a test tone in the calibration mode. The switchable mode enables the tuner to be effective during weak terrestrial reception, strong terrestrial reception, and connection to a cable plant.
Abstract:
A cascadable AGC amplifier in a signal distribution system includes a low noise cascadable amplifier having a through path and a cascadable output. The cascadable amplifier is also configured to provide AGC over a predetermined input power range. The cascadable AGC amplifier can be configured to provide gain or attenuation. When the cascadable AGC amplifier is implemented in a signal distribution system, typically as part of a signal distribution device, an input signal can be gain controlled and supplied to multiple signal paths without distortion due to degradation of signal to noise ratio or distortion due to higher order amplifier products. The distributed signal is not significantly degraded by distortion regardless of the number of cascadable AGC amplifiers connected in series or the position of the cascadable AGC amplifier in the signal distribution system.
Abstract:
A translational switch system includes first and second translational switches, and a signal bus coupled therebetween. The first translational switch includes one or more inputs configured to receive a respective one or more first input signals, a first plurality of outputs, and a second plurality of outputs. The second translational switch includes one or more inputs configured to receive a respective one or more second input signals, a first output, and a second output. The signal bus, coupled between the first and second translational switches, includes (i) a first bus line coupled to a first one of the first plurality of outputs of the first translational switch, and to the first output of the second translational switch, and (ii) a second bus line coupled to a first one of the second plurality of outputs of the first translational switch, and to the second output of the second translational switch.
Abstract:
Circuits, systems, and methods for assembling a composite signal include a frequency translation circuit coupled to receive an input signal and operable to generate a plurality of frequency-translated versions of the input signal at a respective plurality of different frequencies, the plurality of frequency-translated input signals defining a group of frequency translated signals. The plurality of frequency translated signals may each be processed to provide a composite signal.
Abstract:
Multiple input signal sources in predetermined frequency bands are each applied to block frequency converters. Each block frequency converter frequency converts an input signal to one of a plurality of predetermined frequency bands. A crosspoint switch is configured to route the frequency converted input signals at one of the plurality of predetermined frequency bands to any one of a plurality of available band translation devices. Each of the band translation devices is configured to frequency convert the signal from a first predetermined frequency band to a second predetermined frequency band. Output signals from one or more band translation devices can be combined into a composite signal.