Abstract:
A method and system for controlling temperature in an electric vehicle battery pack such that battery pack longevity is preserved, while vehicle driving range is maximized. A controller prescribes a maximum allowable temperature in the battery pack as a function of state of charge, reflecting evidence that lithium-ion battery pack temperatures can be allowed to increase as state of charge decreases, without having a detrimental effect on battery pack life. During vehicle driving, battery pack temperature is allowed to increase with decreasing state of charge, and a cooling system is only used as necessary to maintain temperature beneath the increasing maximum level. The decreased usage of the cooling system reduces energy consumption and increases vehicle driving range. During charging operations, the cooling system must remove enough heat from the battery pack to maintain temperatures below a decreasing maximum, but this has no impact on driving range.
Abstract:
A system for cooling a fuel cell stack and a drive unit in a fuel cell vehicle is disclosed, wherein the system includes a drive unit and a fuel cell stack. An oil cooling loop for the drive unit includes a three way valve, a liquid to liquid heat exchanger, and a pump. The liquid to liquid heat exchanger may be used to transfer drive unit off heat into the stack coolant loop. By not using an oil to air heat exchanger overall heat exchanger arrangement air side pressure drop can be minimized and airflow increased. The three way valve allows decoupling of the cooling loops if needed to inhibit negative impact on the fuel cell stack.
Abstract:
The invention relates to a device for the continuous, homogeneous-catalysis reaction of a liquid with a gas and optionally an additional fluid, wherein the device comprises at least one reactor having an external liquid circulation driven by a pump, and wherein the device has at least one membrane separation stage that preferably holds back the homogeneous catalyst. The aim of the invention is to specify a device that allows homogeneous-catalysis gas/liquid phase reactions, in particular hydroformylations, which operate with membrane separation of the catalyst to be performed economically at an industrially relevant scale. Said aim is achieved in that a jet loop reactor is provided as the reactor, and that the pump and the membrane separation stage are arranged in the same external liquid circuit.
Abstract:
The present invention provides a composition comprising: a) an inert porous support material, b) an ionic liquid, c) a metal selected from group 9 of the Periodic Table of the Elements, d) a phosphorus-containing organic ligand, e) at least one organic amine. The present invention further provides a process for hydroformylating olefin-containing hydrocarbon mixtures to aldehydes with addition of the inventive composition as a catalytically active composition, wherein: a) the water content of the olefin-containing hydrocarbon mixture is adjusted to not more than 20 ppm, b) the content of polyunsaturated compounds in the olefin-containing hydrocarbon mixture is adjusted to not more than 3000 ppm, c) a molar ratio of organic amines according to claims 10-13 to phosphorus-containing organic ligands according to claims 8-9 of at least 4:1 is established, d) a molar ratio of phosphorus-containing organic ligands according to claims 8-9 to rhodium of at least 10:1 is established.
Abstract:
The invention is a method for processing a mixture containing water, 3-methyl-1-butene and at least one other methylbutene. The method comprises primary distillation of the mixture, giving a gaseous primary overhead product containing methylbutene and water and a water-free primary bottom product containing 3-methyl-1-butene; condensation of the gaseous primary overhead product so as to give a condensate comprising a liquid aqueous phase and a liquid organic phase; separation of the condensate into a liquid aqueous phase and a liquid organic phase; discharge of the liquid aqueous phase; recirculation of the organic phase to the primary distillation; and finally secondary distillation of the water-free primary bottom product from the primary distillation so as to give a secondary overhead product comprising 3-methyl-1-butene and a secondary bottom product. The secondary overhead product obtained has a purity which enables it to be used directly as monomer or comonomer for preparing polymers or copolymers.
Abstract:
A fuel cell assembly having a flow distribution subassembly that comprises four sets of flow channels, the first set facing an anode for distribution of a fuel reactant to said anode, the second set facing a cathode for distribution of an oxidant to said cathode, the third set in flow communication with said second set and in heat transfer relation with at least one of said anode and said cathode, and the fourth set receiving a coolant different from said oxidant.
Abstract:
A fuel cell system that includes a first fuel cell stack and a second fuel cell stack in a divided stack design. A first water vapor transfer unit is used to humidify the cathode inlet to the first divided stack and a second water vapor transfer unit is used to humidify the cathode inlet air to the second divided stack. The cathode exhaust gas from the divided stacks is used to provide the humidification for the water vapor transfer units. In order to provide relative humidity balancing between the first and second divided stacks, the cathode inlet air flowing through one of the WVT units is sent to one of the divided stacks that receives the cathode exhaust gas from the other divided stack and vice versa.
Abstract:
A method for quickly and efficiently heating a fuel cell stack at system start-up. The method uses and prioritizes various stack heat sources based on their efficiency to heat the stack. A thermal set-point for heating the stack to the desired temperature is determined based on the ambient temperature and, the stack cooling fluid temperature. The set-point is then compared-to the stack heating provided by the heat sources that are operating through normal system start-up operation. If more heat is necessary to reach the set-point, the method may first charge a system battery using stack power where the load causes the fuel cell stack to heat up. If additional heating is still required, the method may then turn on a cooling fluid heater, then flow a small amount of hydrogen into the cathode inlet stream to provide combustion, and then increase the compressor load as needed.
Abstract:
A fuel cell system that employs a heat exchanger and a charge air cooler for reducing the temperature of the cathode inlet air to a fuel cell stack during certain system operating conditions so that the cathode inlet air is able to absorb more moisture in a water vapor transfer unit. The system can include a valve that selectively by-passes the heat exchanger if the cathode inlet air does not need to be cooled to meet the inlet humidity requirements. Alternately, the charge air cooler can be cooled by an ambient airflow.