Abstract:
A grating structure having a fused silica base includes alternating ridges and grooves. The ridges and grooves form a fused silica to air interface. The ridges and grooves are configured such that the grating has a ratio between the effective refractive index difference between s-polarization and p-polarization of about 1/3. As such, for non-polarized light with an incident angle θin of between 40° and 90° and a wavelength λ=350-1600 nm, the grating directs both s-polarization and p-polarization components of the incident light to the −1st order diffraction mode.
Abstract:
A double-sided grating divider acts as a light switch where the upper and lower grating dividers are arranged to accommodate a relative lateral shift therebetween of about one-fourth of the period of the diffraction grating elements and where the critical refraction angles of the grating dividers are more than about 43.6°. Lateral shift may be achieved by various devices including MEMS and metal couplers having a known/calibrated thermal coefficient of expansion over a temperature range of interest.
Abstract:
An optical fingerprinting method extracts high quality latent fingerprints from a surface without any invasive chemical or physical contact with the examined object, and requires no cooperation of the subject. Rather than employing extraneous material, the optical properties of the latent fingerprint are used to generate one or more images with sufficient contrast to distinguish the latent fingerprint or some other deformation in the surface. The system includes a light source oriented to apply light at an angle of incidence to the surface at the position to be examined for the latent fingerprint or deformation, a camera oriented to receive light specularly and diffusely reflected from the surface and/or by the fingerprint or deformation on the surface, and a processor that performs the computation for digital contrast enhancement and/or reprojection of the recovered fingerprint image to a frontal view if necessary. The technique uses optical polarization properties to enhance the images by placing a linearly polarized filter(s) in front of the observing camera. At least two pictures of the same scene with the same lighting and view angle arrangement are taken whereby each of the pictures differ only in that the orientations of the polarization filter are different. At least two light polarization parameters for each pixel are computed from the two or more images taken with different polarizer orientations. An image with each pixel value representing the value of one of the polarization parameters or a function of the polarization parameters is generated and displayed, with some digital contrast enhancement and/or reprojection applied. The hidden latent fingerprint pattern is revealed in at least one such image with the interfering background pattern significantly suppressed.
Abstract:
An optical fingerprinting method extracts high quality latent fingerprints from a surface without any invasive chemical or physical contact with the examined object, and requires no cooperation of the subject. Rather than employing extraneous material, the optical properties of the latent fingerprint are used to generate one or more images with sufficient contrast to distinguish the latent fingerprint or some other deformation in the surface. The system includes a light source oriented to apply light at an angle of incidence to the surface at the position to be examined for the latent fingerprint or deformation, a camera oriented to receive light specularly and diffusely reflected from the surface and/or by the fingerprint or deformation on the surface, and a processor that performs the computation for digital contrast enhancement and/or reprojection of the recovered fingerprint image to a frontal view if necessary. The technique uses optical polarization properties to enhance the images by placing a linearly polarized filter(s) in front of the observing camera. At least two pictures of the same scene with the same lighting and view angle arrangement are taken whereby each of the pictures differ only in that the orientations of the polarization filter are different. At least two light polarization parameters for each pixel are computed from the two or more images taken with different polarizer orientations. An image with each pixel value representing the value of one of the polarization parameters or a function of the polarization parameters is generated and displayed, with some digital contrast enhancement and/or reprojection applied. The hidden latent fingerprint pattern is revealed in at least one such image with the interfering background pattern significantly suppressed.
Abstract:
Waveguides and scattering devices are made from a pair of slabs, at least one slab being either an “epsilon-negative (ENG)” layer in which the real part of permittivity is assumed to be negative while its permeability has positive real part, or a “mu-negative (MNG)” layer that has the real part of its permeability negative but its permittivity has positive real part. The juxtaposition and pairing of such ENG and MNG slabs under certain conditions lead to some unusual features, such as resonance, complete tunneling, zero reflection and transparency. Such materials also may be configured to provide guided modes in a waveguide having special features such as mono-modality in thick waveguides and the presence of TE modes with no cut-off thickness in thin parallel-plate waveguides. Using equivalent transmission-line models, the conditions for the resonance, complete tunneling and transparency are described as well as the field behavior in these resonant paired structures. A “matched” lossless ENG-MNG pair is configured to provide “ideal” image displacement and image reconstruction.
Abstract:
Guided-wave structures comprising chiral materials. Guided-wave structures provided in accordance with this invention comprise chiral materials wherein bifurcated electromagnetic modes are allowed. The guided-wave structures are particularly useful for directional couplers, switches and modulators.
Abstract:
Graphene may support electromagnetic radiation and be able to support a variety of optical devices. In general, graphene may exhibit changeability in properties such as the conductivity and the like of graphene. Graphene may comprise carbon and be of a thickness of a single atomic layer. In another embodiment, Graphene may be thicker than a single atomic layer, but may be able to exhibit changeability in the properties noted above. Disclosed herein is the guiding and manipulating of optical signals on layers of graphene to create waveguides, ribbon waveguides, beamsplitters, lenses, attenuators, mirrors, scatterers, Fourier optics, Luneburg lenses, metamaterials and other optical devices.
Abstract:
Circuits and circuit elements adapted to function at optical or infrared frequencies are made from plasmonic and/or nonplasmonic particles disposed on a substrate, where the plasmonic and nonplasmonic particles have respective dimensions substantially smaller than a wavelength of an applied optical or infrared signal. Such particles are deposited on a substrate in a variety of shapes and sizes from a variety of plasmonic and/or nonplasmonic materials so as to form resistors, capacitors, inductors and circuits made from combinations of these elements.
Abstract:
A light switch (or valve) made up of two mutually inverted, substantially identical diffraction gratings with a liquid medium therebetween, arranged to allow the grating substrates to be shifted laterally relative to one another so as to align and mis-align the grating elements. When aligned, incident-polarized light passes through the switch and when misaligned, light does not pass through the switch but is reflected.
Abstract:
Graphene may support electromagnetic radiation and be able to support a variety of optical devices. In general, graphene may exhibit changeability in properties such as the conductivity and the like of graphene. Graphene may comprise carbon and be of a thickness of a single atomic layer. In another embodiment, Graphene may be thicker than a single atomic layer, but may be able to exhibit changeability in the properties noted above. Disclosed herein is the guiding and manipulating of optical signals on layers of graphene to create waveguides, ribbon waveguides, beamsplitters, lenses, attenuators, mirrors, scatterers, Fourier optics, Luneburg lenses, metamaterials and other optical devices.