Abstract:
The present invention relates to a method of separating a sample comprising biological compounds, such as nucleic acids. The nucleic acids are subjected to electrophoresis using a matrix that is essentially free of denaturants and having at least one random, linear copolymer comprising a first comonomer of acrylamide and at least one secondary comonomer. A temperature of at least a portion of the matrix is at least about 80° C.
Abstract:
The invention relates to a non-invasive method to diagnose the changes of molecular structures of organism tissues from body surface and a dedicated apparatus. The apparatus is comprised of a Fourier Transform infrared spectrometer and a set of additional accessories. Said additional accessories include a mid-IR fiber optics sampling attachment, a fiber coupling part, and an infrared detector part. The detection method is comprised of placing the ATR probe of the dedicated apparatus on the skin surface of a region to be tested, and scanning more than one time in which the resolution of the apparatus is 1-32 cm−1 and the range of the spectrum is 800-4000 cm−1. It is possible to detect changes in molecular structures of living biological tissues in the early stages of cancer, and testees will not feel uncomfortable during testing. The method is easy to operate, quick, accurate, and it doesn't harm the body.
Abstract:
The present invention relates to a method for determining the presence of a mutation in a first sample comprising first nucleotides. The reference sample comprising reference nucleotides. The first sample and a reference sample are subjected to electrophoresis in the presence of at least one intercalating dye. During electrophoresis the temperature of the first sample and the reference sample is changed by an amount sufficient to change an electrophoretic mobility of at least one of the first or reference nucleotides. Fluorescence intensity data are obtained. The fluorescence intensity data are indicative of the presence of the first and reference nucleotides. At least one of the first sample or reference samples comprises products resulting from a polymerase chain reaction (PCR), the products not having been desalted prior to electrophoresis.
Abstract:
This invention relates to an electrophoresis separation medium having a gel matrix of at least one random, linear copolymer comprising a primary comonomer and at least one secondary comonomer, wherein the comonomers are randomly distributed along the copolymer chain. The primary comonomer is an acrylamide or an acrylamide derivative that provides the primary physical, chemical, and sieving properties of the gel matrix. The at least one secondary comonomer imparts an inherent physical, chemical, or sieving property to the copolymer chain. The primary and secondary comonomers are present in a ratio sufficient to induce desired properties that optimize electrophoresis performance. The invention also relates to a method of separating a mixture of biological molecules using this gel matrix, a method of preparing the novel electrophoresis separation medium, and a capillary tube filled with the electrophoresis separation medium.
Abstract:
A capillary electrophoresis system comprises capillaries positioned in parallel to each other forming a plane. The capillaries are configured to allow samples to migrate. A light source is configured to illuminate the capillaries and the samples therein. This causes the samples to emit light. A lens is configured to receive the light emitted by the samples and positioned directly over a first group of the capillaries and obliquely over a second group of the capillaries. The light source is further configured to illuminate the second group of capillaries more than the first group of the capillaries such that amount of light received by the lens from the first group of capillaries is substantially identical to amount of light received from the second group of capillaries when an identical amount of the samples is migrating through the first and second group capillaries.
Abstract:
An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. Electrical crosstalk between neighboring capillaries is attenuated using a protective tubing formed from an electrically insulative material. This crosstalk attenuation is provided in the form of sheathing, either around individual capillaries, or around bundles of spaced apart capillaries. Crosstalk attenuation may be enhanced by passing a nonconductive gas or liquid through lumens formed in the protective tubing, in which lumens the capillary tubes are present.
Abstract:
An automated electrophoretic system is disclosed. The system employs a capillary cartridge having a plurality of capillary tubes. The cartridge has a first array of capillary ends projecting from one side of a plate. The first array of capillary ends are spaced apart in substantially the same manner as the wells of a microtitre tray of standard size. This allows one to simultaneously perform capillary electrophoresis on samples present in each of the wells of the tray. The system includes a stacked, dual carousel arrangement to eliminate cross-contamination resulting from reuse of the same buffer tray on consecutive executions from electrophoresis. The system also has a gel delivery module containing a gel syringe/a stepper motor or a high pressure chamber with a pump to quickly and uniformly deliver gel through the capillary tubes. The system further includes a multi-wavelength beam generator to generate a laser beam which produces a beam with a wide range of wavelengths. An off-line capillary reconditioner thoroughly cleans a capillary cartridge to enable simultaneous execution of electrophoresis with another capillary cartridge. The streamlined nature of the off-line capillary reconditioner offers the advantage of increased system throughput with a minimal increase in system cost.
Abstract:
A detector for DNA sample identification is provided with a transmission grating beam splitter (TGBS). The TGBS split fluoresced light from a tagged DNA sample into 0th order and a 1st order components, both of which are detected on a two-dimensional detector array of a CCD camera. The 0th and 1st order components are detected along a column of pixels in the detector array, and are spaced apart from one another. The DNA samples are tagged with four fluorescent dyes, one dye specific for each nucleotide, and all four dyes responding in slightly different manner to the same monochromatic excitation signal. The TGBS splits fluoresced incoming light into 0th and 1st order components, which are then spread out among a number of pixels in the detector array. The 1st component of this light is received by pixels whose position relative to the 0th order component depends on the frequency of fluorescence. Thus, the position at which signal energy is detected on the array is indicative of the particular dye, and therefore, the corresponding nucleotide tagged by that dye. Monitoring signal energy at the 0th order pixel and selected 1st order pixels, provides a set of data from which one may then identify the particular nucleotide.
Abstract:
The invention provides a side-entry optical excitation geometry for use in a multiplexed capillary electrophoresis system. A charge-injection device is optically coupled to capillaries in the array such that the interior of a capillary is imaged onto only one pixel. In Sanger-type 4-label DNA sequencing reactions, nucleotide identification ("base calling") is improved by using two long-pass filters to split fluorescence emission into two emission channels. A binary poly(ethyleneoxide) matrix is used in the electrophoretic separations.