Direct drive for a windshield wiper system

    公开(公告)号:US11713024B2

    公开(公告)日:2023-08-01

    申请号:US16597882

    申请日:2019-10-10

    Abstract: Provided are embodiments for a direct drive wiper system. The system includes a motor that is operably coupled to a wiper system to drive one or more wiper arms of the wiper system, and a gearbox, wherein an input to the gearbox is coupled to the motor and an output of the gearbox is coupled to the wiper assembly, wherein the gearbox is configured to convert an input from the motor to an output to drive the wiper system. The system also includes a brake and stopper mechanism that is coupled to the gearbox and the wiper system. Also provided are embodiments for a method for operating the direct drive wiper system.

    COLLABORATIVE COORDINATION OF TARGET ENGAGEMENT

    公开(公告)号:US20230228527A1

    公开(公告)日:2023-07-20

    申请号:US17578322

    申请日:2022-01-18

    CPC classification number: F41G7/2253 F41G7/2293 F41G7/2233

    Abstract: A method for collaboration of a plurality of nodes includes determining at each node SLAM data for the node, the SLAM data including estimated position of features and/or targets observed and processed by the node using SLAM algorithms and covariance associated with the estimated positions, communicating at each node the node's SLAM data to the other nodes via each nodes' datalink communication system, receiving at each node SLAM data communicated from the other nodes via each node's datalink communication system, combining at each node the node's SLAM data and the SLAM data received from the other nodes based on features or targets included in SLAM data from the other nodes, refining at each node estimated positions of features and/or targets based on results of the combining, and navigating each node to a target at the target destination as a function of at least one of the refined estimated positions.

    Differential pressure sensor
    25.
    发明授权

    公开(公告)号:US11692895B2

    公开(公告)日:2023-07-04

    申请号:US17217234

    申请日:2021-03-30

    Abstract: A differential MEMS pressure sensor includes a topping wafer with a top side and a bottom side, a diaphragm wafer having a top side connected to the bottom side of the topping wafer and a bottom side, and a backing wafer having a top side connected to the bottom side of the diaphragm wafer and a bottom side. The topping wafer includes a first cavity formed in the bottom side of the topping wafer. The diaphragm wafer includes a diaphragm, a second cavity formed in the bottom side of the diaphragm wafer underneath the diaphragm, an outer portion surrounding the diaphragm, and a trench formed in the top side of the diaphragm wafer and positioned in the outer portion surrounding the diaphragm.

    VISION BASED AIRCRAFT CABIN AMBIENT LIGHT CONTROL

    公开(公告)号:US20230122842A1

    公开(公告)日:2023-04-20

    申请号:US17934330

    申请日:2022-09-22

    Abstract: A vision-based aircraft cabin light monitoring/control system is used to maintain the light intensity level within the aircraft cabin at a desired level. The system uses video cameras to continuously monitor the ambient light entering the passenger cabin windows, analyzes the video stream/feed to identify the light intensity level within the cabin, identifies the window whose state should be controlled, and generates commands to control the window through central cabin controllers. The system further compensates for light sources internal to the cabin and monitors the phase of flight to ensure compliance to specific light conditions within the aircraft cabin.

    Determining metrics of a cloud atmosphere using time-difference measurements

    公开(公告)号:US11630215B2

    公开(公告)日:2023-04-18

    申请号:US16275152

    申请日:2019-02-13

    Abstract: Apparatus and associated methods relate to determining metrics of a cloud atmosphere using time difference measurements. A light projector projects a pulse of light into a cloud atmosphere, and a light sensor detects a portion of the projected pulse of light backscattered by the cloud atmosphere. A backscatter coefficient is calculated based on peak amplitude of the detected portion. An optical extinction coefficient is calculated based on a time difference between a peak time and a post-peak time, which correspond to times at which the peak amplitude of the detected portion occurs and at which the detected portion equals or crosses a sub-peak threshold, respectively. In some embodiments, a logarithm amplifier is used to facilitate processing of signals of widely varying amplitudes. In some embodiments, the sub-peak threshold is calculated as a fraction of the peak amplitude of the detected portion.

    MULTI-FIBER OPTICAL SENSOR FOR LIGHT AIRCRAFT

    公开(公告)号:US20230081599A1

    公开(公告)日:2023-03-16

    申请号:US17475819

    申请日:2021-09-15

    Inventor: Mark Ray

    Abstract: A multi-fiber optical sensor system includes a light source configured to generate light energy, a transmitter fiber configured to receive the light energy from the light source and to project light energy out of a projecting end of the transmitter fiber over a transmitter fiber field of view, and a plurality of receiver fibers. Each of the plurality of receiver fibers has a receiving end aligned proximate and substantially parallel to the projecting end of the transmitter fiber and is configured to receive a received portion of the projected light energy reflected from a target within a receiver field of view. The multi-fiber optical sensor system also includes a lenslet array configured to shape the transmitter fiber field of view and give the transmitter field of view a finite cross-sectional area. The lenslet array has a plurality of lens corresponding to the transmitter fiber and each of the plurality of receiver fibers and is further configured to shape the receiver fiber field of view, tilt the center of the field of view with respect to the axis of the projected light energy for each of the plurality of receiver fibers and give the receiver fiber field of view for each of the plurality of receiver fibers a finite cross-sectional area. The multi-fiber optical sensor system also includes a detector configured to detect the portion of the projected light energy received by each of the plurality of receiver fibers. The receiver fiber field of view for each of the plurality of receiver fibers crosses the transmitter fiber field of view between a first crossing point at a distance Rmin from a lens axis and a last crossing point at a distance Rmax from the lens axis. There is a center crossing point Rmid at a point where a centerline of the receiver fiber field of view for each of the plurality of receiver fibers crosses a centerline of the transmitter fiber field of view. The range between Rmin and Rmax for each of the plurality of receiver fibers defines a detection zone such that each of the plurality of receiver fibers has a unique detection zone. Targets include a hard target and/or constituents of a cloud atmosphere.

    Pitot heater health monitoring system

    公开(公告)号:US11604209B2

    公开(公告)日:2023-03-14

    申请号:US16512816

    申请日:2019-07-16

    Inventor: Shoyeb Khan

    Abstract: Provided are embodiments including a system for performing health monitoring. The system includes a measurement device configured to measure pressure of an environment, a heating element of the heater section coupled to the measurement device, a first sensing element operably coupled to a first region of the measurement device, and a second sensing element operably coupled to a second region of the measurement device. The system also includes a programmable logic that is configured to generate a status signal or flag based at least in part on conditions of the first region or the second region of the measurement device, a processing system configured to control the heating element responsive to reaching a threshold temperature, and a display configured to display a status of the first region or second region of the measurement device based at least in part on the status signal or flag.

Patent Agency Ranking