Abstract:
The present invention provides a mechanism for supporting high digital bandwidth in a multi-drop bus system. A first device of the system is electrically coupled to a bus. Multiple receiving devices are coupled to the bus through associated electromagnetic couplers having coupling coefficients in a specified range. The geometries of the electromagnetic couplers are selected to reduce variations in the coupling coefficients with changes in the relative positions of the coupler components.
Abstract:
A controller sends signals to an electromagnetic coupler associated with a bus. The signals are arranged to set a coupling strength of the coupler.
Abstract:
A controller sends signals to an electromagnetic coupler associated with a bus. The signals are arranged to set a coupling strength of the coupler.
Abstract:
The present invention provides a chipset for transferring data through an electromagnetically coupled bus system. The chipset includes a modulator, a matching circuit and a demodulator. The modulator modifies a clock to encode multiple bits in a complementary pair of symbols. The matching circuit modifies the clock signal to generate a complementary pair of reference signals that is transmitted with the complementary symbol pair, and the demodulator decodes a second set of bits from selected properties of a complementary pair of transferred symbols.
Abstract:
Calibrating return time includes determining clock calibration information based on clock signals local to a master device and return clock signals corresponding to each of at least two slave devices, storing clock calibration information with respect to each of the slave devices with which the master device will communicate using a bus, and, after the clock calibration information has been stored, resynchronizing data signals that are received from each of the slave devices based on the corresponding stored clock calibration information.
Abstract:
Generating and using calibration information includes using a test circuit to generate calibration information that is representative of how changes in at least one variable affect operation of a first element of a controlled circuit and using the calibration information to provide control signals to the first element and to at least one other element of the controlled circuit to adjust operation of the first element and the other element to accommodate changes in the variable.
Abstract:
An electromagnetic (EM) coupler including a first transmission structure having a first geometry, and a second transmission structure having a second geometry and forming an EM coupler with the first transmission structure, the first and second geometries being selected to reduce sensitivity of EM coupling to relative positions of the first and second transmission structures is disclosed.
Abstract:
An electromagnetic (EM) coupler including a first transmission structure having a first geometry, and a second transmission structure having a second geometry and forming an EM coupler with the first transmission structure, the first and second geometries being selected to reduce sensitivity of EM coupling to relative positions of the first and second transmission structures is disclosed.