Abstract:
In a substrate cleaning device, a substrate is held and is opposite to a plurality of heating/cooling components that can operate at different temperatures, the substrate and the heating/cooling components being separated to each other with a gap, which is filled with cleaning liquid. Chuck pins of resin with a low heat conductivity are used to hold the substrate, and the substrate is positioned such that it is not in contact with any component other than the chuck pins. In this way, the amount of etching can be adjusted for each portion of the substrate by controlling the temperature distribution on the substrate, thereby providing improved evenness of a surface within the plane of the substrate after a cleaning process.
Abstract:
A production management method includes the steps of: pre-storing production information including delivery date information, manufacturing apparatus information and lot information; calculating a scheduled shipping date for each lot on the basis of the production information; reading a delivery date of the lot; calculating the number of delay days of the lot; outputting an alarm to the lot when the number of delay days is a positive number; and analyzing the main cause of the delay of the lot and generating an expedite instruction when the number of delay days is larger than 1.
Abstract:
A method of manufacturing a semiconductor device including an interconnection and a capacitor formed with a Cu layer in accordance with the present invention includes the steps of forming an interlayer insulation layer, forming an interconnection hole and a capacitor hole in the interlayer insulation layer, filling the interconnection hole with the Cu layer to form an interconnection layer, and partly filling the capacitor hole with the Cu layer to form one electrode of the capacitor. The step of filling the interconnection hole with the Cu layer to form the interconnection layer and the step of partly filling the capacitor hole with the Cu layer to form one electrode of the capacitor are performed in a single process step. Thus, manufacturing process of the semiconductor device can be simplified.
Abstract:
A nonvolatile semiconductor memory device having a memory cell comprising source/drain diffusion layer in p-well formed to a silicon substrate, a floating gate as a first gate, a control gate (word line) as a second gate, and a third gate, in which the floating gate and the p-well are isolated by a tunnel insulator film, the third gate and the p-well are isolated by a gate insulator film, the floating gate and the third gate are isolated by an insulator film, the floating gate and the word line (control gate) are isolated by a insulator film (ONO film), and the second gate film and the word line (control gate) are isolated by a silicon oxide film, respectively, wherein the thickness of the tunnel insulator film is made larger than the thickness of the gate insulator film. Accordingly, the reliability and access time of the device is improved.
Abstract:
A nonvolatile semiconductor memory device configured by a select MOS transistor provided with a gate insulator film and a select gate electrode, as well as a memory MOS transistor provided with a capacitor insulator film comprising a lower potential barrier film, a charge trapping film, and an upper potential barrier film, as well as a memory gate electrode. The charge trapping film is formed with a silicon oxynitride film and the upper potential barrier film is omitted or its thickness is limited to 1 nm and under to prevent the Gm degradation to be caused by the silicon oxynitride film, thereby lowering the erasure gate voltage. The charge trapping film is formed with a silicon oxynitride film used as a main charge trapping film and a silicon nitride film formed on or beneath the silicon oxynitride film so as to form a potential barrier effective only for holes. And, a hot-hole erasing method is employed to lower the erasure voltage.
Abstract:
An AD-converted digital video data is encoded by a difference encoding method before it is outputted and such encoded digital video data is then outputted, after it is converted to gray code or to a predetermined code in which a fixed value is added. Problems solved include noise that is generated when the AD conversion circuit outputs video data and that migrates into a CCD side via a power supply line on a printed circuit board, and noise that appears on a display image by migration into an input terminal side from an output circuit side via the power supply line and a semiconductor substrate within an AD conversion LSI.
Abstract:
For simulation of an electric characteristic of a circuit including transistors, a plurality of transistors are arranged in a matrix pattern on the basis of sizes of the transistors, and data of the electric characteristic measured on first transistors among the plurality of transistors are stored in the matrix pattern. When a position of a second transistor different from the first transistors is specified in the matrix pattern, data of the electric characteristic of the second transistor are determined according to interpolation rules by using the measured data of the one or more first transistors if there are one or more first transistors in the plurality of first transistor at one or more positions adjacent to the position of the second transistor in the matrix pattern.
Abstract:
A bus (3) includes a data bus (3a) and a clock bus (3b). The data bus (3a) is used for propagation of data MDIO conforming to the MDIO interface standards performed between a host controller IC (40) and a transceiver IC (1), and for propagation of data (SDA) conforming to the I2C standards performed between the transceiver IC (1) and a peripheral IC (2). Meanwhile, the clock bus (3b) is used for propagation of clock (MDC) conforming to the MDIO interface standards performed between the host controller IC (40) and the transceiver IC (1), and for propagation of clock (SCL) conforming to the I2C standards performed between the transceiver IC (1) and the peripheral IC (2).
Abstract:
A gate insulating film 4, two polysilicon films 5 and 7, and a silicon nitride film 9 are successively laminated on a semiconductor substrate 1 in this order. Each of the polysilicon films 5 and 7 contains phosphorus. The polysilicon film 5 has a region having a phosphorus concentration higher than that of the polysilicon film 7. Gate electrodes 10n, 10p, 40n, and 40p are formed on the gate insulating film 4 by partly etching the polysilicon films 5 and 7 and the silicon nitride film 9. In this case, the etching rate of the region of the polysilicon film 5, having a phosphorus concentration higher than that of the polysilicon film 7, is higher than that of the polysilicon film 7. Due to this difference, notches are formed at the bottom portions on side surfaces of respective gate electrodes 10p, 40n, and 40p.
Abstract:
Obtained are a semiconductor device which can be implemented with high density of integration while ensuring a constant capacitor capacitance in high reliability and a method of fabricating the same. The semiconductor device, including a memory cell region and a peripheral circuit region, comprises an insulating film, having an upper surface, formed on a major surface of a semiconductor substrate to extend from the memory cell region to the peripheral circuit region. A capacitor lower electrode is formed in the memory cell region to upwardly extend beyond the upper surface of the insulating film on the major surface of the semiconductor substrate. A capacitor upper electrode is formed on the capacitor lower electrode through a dielectric film, to extend onto the upper surface of the insulating film. The capacitor lower electrode includes a capacitor lower electrode part having a top surface and a bottom surface. The upper surface of the insulating film is located between the top surface and the bottom surface of the capacitor lower electrode part.