Abstract:
An imprint apparatus molds an uncured resin on a substrate and cures the resin to form a pattern of the cured resin on the substrate. The apparatus includes a mold holding unit that holds the mold, a substrate holding unit that holds the substrate, a deforming unit that deforms the mold held by the mold holding unit into a convex shape toward the substrate, a driving unit that changes an attitude of the mold or the substrate during a releasing operation in which the mold deformed into the convex shape is released from the resin to thereby make the position of a contact region at which the mold is brought into contact with the resin movable, a measuring unit that acquires image information indicating a state of the contact region, and a control unit configured to control the operation of the driving unit based on the image information.
Abstract:
A waveform shaping circuit enhances a rise of a waveform of a voltage applied to a load and includes an input unit to which the voltage is input; a supply unit configured to apply the voltage input from the input unit to the load; a first resistor connected in series between the input unit and the supply unit; a second resistor branch-connected to a portion between the input unit and the supply unit; and a stub connected to the first resistor or the second resistor and including a transmission path of a given length configured to shuttle the voltage by transmitting and reflecting the voltage as a voltage wave.
Abstract:
A waveform shaping circuit enhances a rise of a waveform of a voltage applied to a load and includes an input unit to which the voltage is input; a supply unit configured to apply the voltage input from the input unit to the load; a first resistor connected in series between the input unit and the supply unit; a second resistor branch-connected to a portion between the input unit and the supply unit; and a stub connected to the first resistor or the second resistor and including a transmission path of a given length configured to shuttle the voltage by transmitting and reflecting the voltage as a voltage wave.
Abstract:
A non-inverting amplifier circuit is disclosed that includes an operational amplifier and a preemphasis circuit connected between the operational amplifier and a signal source. The preemphasis circuit is configured to compensate for the internal delay of a load connected to the output of the operational amplifier by emphasizing a high-frequency component of a signal fed from the signal source.
Abstract:
The present invention relates to a light source apparatus. The light source apparatus includes a plurality of optical pulse train generation sections; an optical switch section capable of selectively outputting an optical pulse train to be taken as an optical pulse train for current use; an output light generation section capable of generating continuous light of multiple wavelengths from said optical pulse train output from said optical switch section; and an optical switch control section for controlling said optical switch section to switch an output of said optical pulse train for current use from said optical switch section, in accordance with the states of respective optical pulse trains generated by said plurality of optical pulse train generation sections and without involvement of instantaneous power interruption.
Abstract:
An optical switch which minimizes losses in the power of output light while enabling deflection of light within a range of comparatively large deflection angles used for setting switching among output ports. The optical switch is configured to have a first light deflection element deflecting the input light at an angle appropriate to a position of an designated port with an applied first drive voltage; and a second light deflection element finely adjusting a deflection angle of the light output from the first deflection element to the designated port with an applied second drive voltage such that power of light output from the designated port becomes maximum.
Abstract:
An encryption technique having a greater encryption strength than conventional mathematical encryption by using classic physical random numbers etc., including a step for modulating one-bit input data into a coded signal by associating it with a discrete value of at least two bits determined by pseudo random numbers and physical random numbers and a step for channel-coding and outputting the coded signal, wherein 1) the coded signal can be demodulated into the input data by the pseudo random number, 2) the number of sets of input data, pseudo random number, and physical random number corresponding to a particular discrete value is equal for two values of the input data, and 3) the number of sets of pseudo random number and physical random number corresponding to respective values of the input data and respective values of the discrete value is equally associated also with any set of them.
Abstract:
An optical switch which minimizes losses in the power of output light while enabling deflection of light within a range of comparatively large deflection angles used for setting switching among output ports. The optical switch is configured to have a first light deflection element deflecting the input light at an angle appropriate to a position of an designated port with an applied first drive voltage; and a second light deflection element finely adjusting a deflection angle of the light output from the first deflection element to the designated port with an applied second drive voltage such that power of light output from the designated port becomes maximum.
Abstract:
In an optical unit having a holding structure which brings a junk ring or the like into contact with an optical surface of a lens, the optical surface suffers from a serious elastic deformation leading to deterioration of optical performance. Upon holding the lens, therefore, a face other than the optical surface is provided on the lens so that the lens is held by applying a force to the face from element holding members.