Abstract:
A surface of a substrate made of Al in a scintillator panel 1 is sandblasted, whereas one surface thereof is formed with an MgF2 film as a low refractive index material. The surface of MgF2 film is formed with a scintillator having a columnar structure for converting incident radiation into visible light. Together with the substrate, the scintillator is covered with a polyparaxylylene film.
Abstract:
In a scintillator panel comprising a deliquescent scintillator formed on an FOP and a polyparaxylylene film covering over the scintillator, the FOP comprises a protective film peeling prevention rough at a side wall portion thereon coming into contact with the polyparaxylylene film.
Abstract:
A scintillator panel (2) comprises a radiation-transparent substrate(10), aflat resin film (12) formed on the substrate (10), a reflecting film (14) formed on the flat resin film (12), a deliquescent scintillator (16) formed on the reflecting film (14), and a transparent organic film (18) covering the scintillator (16).
Abstract:
A scintillator having a columnar structure adapted to convert incident radiation into visible light is formed on one surface of a substrate made of Al in a scintillator panel. All surfaces of the substrate and scintillator are covered with a first polyparaxylylene film, whereas an SiO2 film is formed on the surface of polyparaxylylene film on the scintillator side. Further, a second polyparaxylylene film is formed on the surface of SiO2 film and the surface of polyparaxylylene film on the substrate side, so that all surfaces are covered with the second polyparaxylylene film.
Abstract:
Comprising a first step of supporting a substrate formed with a scintillator on at least three protrusions of a target-support element disposed on a vapor deposition table so as to keep a distance from said vapor deposition table; a second step of introducing said vapor deposition table having said substrate supported by said target-support element into a vapor deposition chamber of a CVD apparatus; and a third step of depositing an organic film by CVD method onto all surfaces of said substrate, provided with said scintillator, introduced into said vapor deposition chamber.
Abstract:
An organic film vapor deposition method includes a first step of supporting a substrate formed with a scintillator on at least three protrusions of a target-support element disposed on a vapor deposition table so as to keep a distance from the vapor deposition table; a second step of introducing the vapor deposition table having the substrate supported by the target-support element into a vapor deposition chamber of a CVD apparatus; and a third step of depositing an organic film by CVD method onto all surfaces of the substrate, provided with the scintillator, introduced into the vapor deposition chamber.
Abstract:
A radiation image sensor comprises (1) an image sensor 1 having a plurality of light receiving elements arranged one or two dimensionally, (2) scintillator 2 having columnar structure formed on the light-receiving surface of this image sensor 1 to convert radiation into light including wavelengths that can be detected by the image sensor 1, (3) a protective film 3 formed so as to cover and adhere to the columnar structure of the scintillator 2, and (4) a radiation-transmittable reflective plate 4 that has a reflective surface 42 disposed to face the image sensor across the protective film 3.
Abstract:
The light receiving sections of solid-state image sensing devices (2a and 2b) are disposed on a base (1) to adjoin each other, and are fixed with an adhesive resin (11). A transparent film (3) is formed on the light receiving sections so as to wholly cover a gap (25) and have a flat surface on which a layer of a scintillator (4) is formed.
Abstract:
A light-receiving device array in which a plurality of light-receiving devices are one- or two-dimensionally arranged on a substrate, a scintillator layer is deposited on the light-receiving devices and provided with columnar crystals, and an organic film is formed over the scintillator layer and there outside region of the substrate and it intrudes into gaps among the top part of the columnar crystals to cover the scintillator layer.
Abstract:
A radiation image sensor comprises (1) an image sensor 1 having a plurality of light receiving elements arranged one or two dimensionally, (2) scintillator 2 having columnar structure formed on the light-receiving surface of this image sensor 1 to convert radiation into light including wavelengths that can be detected by the image sensor 1, (3) a protective film 3 formed so as to cover and adhere to the columnar structure of the scintillator 2, and (4) a radiation-transmittable reflective plate 4 that has a reflective surface 42 disposed to face the image sensor across the protective film 3.