Abstract:
A lighting apparatus may include an electrically conductive housing, in whose interior at least one light source and at least one electromagnetic radiation-emitting circuit component configured to operate the at least one light source are arranged; and an electrically conductive cover configured to cover the at least one circuit component; wherein the cover and the housing are electrically connected to one another.
Abstract:
A retaining frame (2) having at least one optical element (3) secured thereto by injection molding, with the at least one optical element (3) being embodied for beam shaping at least by means of total internal reflection and/or diffraction.
Abstract:
A motor vehicle headlight module having at least two lighting units (1) is specified. Here, each lighting unit (1) comprises at least one light-emitting diode chip (2). Different lighting units (1) are provided here for different lighting functions. Furthermore, the motor vehicle headlight module has a common heat sink (6) for the lighting units, to which heat sink the lighting units are thermally connected, and a common current-stabilizing electronic system (8) for supplying voltage to the lighting units.
Abstract:
A vehicle lighting device having at least two semiconductor light-emitting elements may include at least a first light-emitting element group and a second light-emitting element group, each having at least one semiconductor light-emitting element, the light-emitting element groups being selectively drivable and the first light-emitting element group having at least a foglight function, the first light-emitting element group and the second light-emitting element group having a daytime running light function.
Abstract:
The invention relates to a high-pressure discharge lamp having a transparent discharge vessel, an ionizable filling which is arranged in the discharge space of the discharge vessel and electrodes, which extend into the discharge space of the discharge vessel, for the purpose of producing a gas discharge, as well as power supply lines, which are passed out of the discharge vessel, for the purpose of supplying energy to the electrodes, the discharge vessel of the high-pressure discharge lamp being provided partially with an electrically conductive coating, with the result that a capacitive coupling is produced between the coating and at least one electrode and/or power supply line. As a result, the starting properties and the luminous efficiency of the lamp are improved.
Abstract:
A lighting device includes at least one light-emitting diode (3) and a cooling aggregate (1) for cooling the at least one light-emitting diode (3), wherein the cooling aggregate (1) is provided with locking elements (17, 18, 19) adapted to form a bayonet catch with a fixing device (30) holding the lighting device. Preferably, at least one of the lighting devices is mounted as the light source in a vehicle headlight.
Abstract:
A motor vehicle headlight element is specified which has at least one light-emitting diode and at least one control apparatus. The control apparatus is suitable for processing a signal which is dependent on a measurement variable and for applying a current, corresponding to the signal, to the light-emitting diode. The control apparatus and the light-emitting diode are arranged on a common mount.
Abstract:
A motor vehicle headlight element is specified which has at least one light-emitting diode and at least one control apparatus. The control apparatus is suitable for processing a signal which is dependent on a measurement variable and for applying a current, corresponding to the signal, to the light-emitting diode. The control apparatus and the light-emitting diode are arranged on a common mount.
Abstract:
A solid-state light source (10) comprising a plurality of LED units (12) arrayed to emit light generally about an axis (14). Each of the LED units (12) can comprise a number of LEDs, for example, up to five. They may all emit in a single color or multiple colors can be combined for a specific effect. A light transmissive light guide (16) is associated with the LED units (12) and has a plurality of input widows (18). Each LED unit (12) faces a respective input window (18) and each window (18) transversely intercepts the axis (14) and receives light from the LED units (12). The input windows (18) lead to a common output window (20) that is axially aligned with the input windows (18). The light guide (16) has smooth sidewalls (22) that extend between the input windows (18) and the output window (20).
Abstract:
A retaining frame (2) having at least one optical element (3) secured thereto by injection molding, with the at least one optical element (3) being embodied for beam shaping at least by means of total internal reflection and/or diffraction.