Abstract:
An uninterruptible power source (UPS) for supplying power to a barrier operator when mains power has failed is disclosed. The UPS includes a UPS controller for detecting and responding to a mains power failure and capable of generating a plurality of control signals. A backup power source and an up-converter is connected to the UPS controller, wherein the up-converter increases the voltage of the backup power source when needed. A switch is responsive to one of the plurality of control signals of the UPS controller and toggles the operator barrier between the up-converter and the mains power source, and awakens the operator via a standby receiver power line. Another embodiment awakens the operator anytime a UPS receiver receives a preamble of a wireless transmission signal. Auxiliary lighting may also be associated with the UPS and/or photo-electric safety devices.
Abstract:
A door operator and related methodologies for learning new transmitter codes include a motor for moving the moveable barrier between two travel limit positions, an operator for controlling operations of the motor and a remote transmitter. The operator includes temporary and permanent memory devices to assist in learning new transmitter codes as needed. In one embodiment, the operator learns a new transmitter code by receiving signals from the remote transmitter after a storage button is depressed. In another embodiment, the operator learns a new transmitter code by periodically alternating between receipt of low range and high range radio frequency signals. In a similar embodiment, actuation of a transmitter button emits an infrared signal for programming the operator and a radio frequency signal for enabling the motor. In yet another embodiment, the transmitter is electrically connected to a port connector that is directly connected to the operator and whereupon actuation of the transmitter transfers the coded signals directly to a controller for learning thereof. Alternatively, insertion of the transmitter into the port may force the controller to generate and send a code to the transmitter. Accordingly, when the transmitter is removed from the port, actuation of a button causes the operator to initiate the appropriate function. In another embodiment, insertion of an indicia-carrying key into the operator could be used to program the operator. Or, actuating the buttons on the transmitter in a predetermined sequence could be used to program the transmitter with the controller.
Abstract:
A method and related system for enabling receipt and storage of data by an operator from at least two types of transmitters, is disclosed. The method includes designating a number of records in a memory array; sub-dividing the memory array into at least two groups, wherein each group is associated with a specific type of transmitter. The method concludes by determining whether one of the number of records is available for writing of data to a specific one of the transmitters.
Abstract:
A limited-use appliance, such as a garage door operator or a home network bridge device, is disclosed which has at least one input device for generating an input signal and a controller associated with the input device and receiving the input signal. The controller initiates at least one limited-use function of the appliance upon receipt of the input signal. A test device is maintained by the controller, and has a predetermined criteria which determines whether the input signal should be sent on to the controller or not. A warning system may be incorporated so that imminent expiration of the limited-use functions initiate warnings for the benefit of the end-user.
Abstract:
A bridge device linking transmitters to a home network includes a transmitter signal receiver adapted to receive transmitter signals in a transmitter format from at least one transmitter and a network signal transceiver adapted to transmit and receive network signals in a network format to and from a home network. A bridge controller is connected to the transmitter signal receiver and the network signal transceiver for the purpose of converting the signals between the formats. The bridge device is able to learn various transmitter type for conversion to a learned home network standard. A master controller may be used to assign specific transmitter button actuations to control specific appliance functions.
Abstract:
A switch for premises electrical circuits provides wireless control compatible with at least one home automation control system technology. A single switch design can operate two-, three-, and four-way circuits without alteration, and without recourse to coordinating remote switches. The switch includes processor functions for restoring a previous state after power interruption, and for establishing a state commanded during the power interruption. The switch uses two single-pole, single-throw relays for positive safety lockout, and adjusts relay actuation timing with reference to power waveform zero-crossing for contact arc reduction with inductive, tungsten, and capacitive loads.
Abstract:
A control routine for groups of remotely controlled, variable-position, position-aware, transceiver-equipped actuators manages data discrepancies by issuing a first set of generic actuation commands to start and stop the actuators, then polling the actuators to report their achieved positions. The routine then applies a rule to determine a preferred position value from among the reports and issues a second set of position-specific actuation commands to all of the actuators. The routine can further poll the actuators to confirm the extent to which the commands have been realized, and can retain and apply compensation factors for performance deviations in the individual actuators. The routine can further manage multiple groups of actuators, dissimilar activators within groups, assignment of an actuator to more than one group, and application of variable control factors as inputs modifying the rule applied by the routine for determining the commands to be issued.
Abstract:
A control routine for groups of remotely controlled, variable-position, position-aware, transceiver-equipped actuators manages data discrepancies by issuing a first set of generic actuation commands to start and stop the actuators, then polling the actuators to report their achieved positions. The routine then applies a rule to determine a preferred position value from among the reports and issues a second set of position-specific actuation commands to all of the actuators. The routine can further poll the actuators to confirm the extent to which the commands have been realized, and can retain and apply compensation factors for performance deviations in the individual actuators. The routine can further manage multiple groups of actuators, dissimilar activators within groups, assignment of an actuator to more than one group, and application of variable control factors as inputs modifying the rule applied by the routine for determining the commands to be issued.
Abstract:
A system and method that create, manage, and maintain a wireless network. The system and method automatically monitor the wireless network and determine an operating status of one or more devices associated with the network. If a determination is made that a device requires attention because of an operating status determined, the system communicates a notification to a designated user providing notice of the operating status. The system may create a proxy of a non-responsive device such that other devices in the network are deceived when communicating with a non-responsive device. The system may be located by a server to enable remote management of the wireless network via the Internet. The system and method enable the creation of scenes and timed events for devices associated with the network. Information tables that provide controller set-ups regarding how the controller communicates within the network may be stored. Devices associated with the network, locations of the devices associated with the network, operating states of the devices, and other information may be determined. Information and routing tables regarding the devices may be determined and communicated to the devices.
Abstract:
A barrier operator is configured to learn and receive disparate wireless transmission signals to control movement of a barrier. The operator includes a receiver core circuit adapted to receive wireless transmission signals containing known and unknown formatted data words. A microcontroller is adapted to determine a fixed code portion of the unknown formatted data words. The microcontroller is also associated with a memory unit and connected to the receiver core circuit for storing in the memory unit the known formatted data words and the unknown formatted data words if the fixed code portion can be determined when the microcontroller is in a learn mode. The receiver core circuit may also scan only frequencies associated with learn codes, pre-selected frequencies, and incremental frequencies within a predetermined range of frequencies.