Abstract:
An image pickup device, a visibility support apparatus, a night vision device, a navigation support apparatus, and a monitoring device are provided in which noise and dark current are suppressed to thereby provide clear images regardless of whether it is day or night. The device includes a light-receiving layer 3 having a multi-quantum well structure and a diffusion concentration distribution control layer 4 disposed on the light-receiving layer so as to be opposite an InP substrate 1, wherein the light-receiving layer has a band gap wavelength of 1.65 to 3 μm, the diffusion concentration distribution control layer has a lower band gap energy than InP, a pn junction is formed for each light-receiving element by selective diffusion of an impurity element, and the impurity selectively diffused in the light-receiving layer has a concentration of 5×1016/cm3 or less. A diffusion concentration distribution control layer has an n-type impurity concentration of 2×1015/cm3 or less before the diffusion, the diffusion concentration distribution control layer having a portion adjacent to the light-receiving layer, the portion having a low impurity concentration. The concentration of the impurity element selectively diffused in the diffusion concentration distribution control layer is decreased to be 5×1016/cm3 or less toward the light-receiving layer.
Abstract:
A moisture detector includes a light-receiving element including an absorption layer having a pn-junction, or an array of the light-receiving elements, wherein the absorption layer has a multiquantum well structure composed of a Group III-V semiconductor, the pn-junction is formed by selectively diffusing an impurity element into the absorption layer, and the concentration of the impurity in the absorption layer is 5×1016/cm3 or less. The moisture detector receives light having at least one wavelength included in an absorption band of water lying in a wavelength range of 3 μm or less, thereby detecting moisture.
Abstract:
A rear-illuminated-type photodiode array has (a) a first-electroconductive-type semiconductor substrate, (b) a first-electroconductive-type electrode that is placed at the rear side of the semiconductor substrate and has openings arranged one- or two-dimensionally, (c) an antireflective coating provided at each of the openings of the first-electroconductive-type electrode, (d) a first-electroconductive-type absorption layer formed at the front-face side of the substrate, (e) a leakage-lightwave-absorbing layer that is provided on the absorption layer and has an absorption edge wavelength longer than that of the absorption layer, (f) a plurality of second-electroconductive-type regions that are formed so as to penetrate through the leakage-lightwave-absorbing layer from the top surface and extend into the absorption layer to a certain extent and are arranged one- or two-dimensionally at the positions coinciding with those of the antireflective coatings at the opposite side, and (g) a second-electroconductive-type electrode provided on the top surface of each of the second-electroconductive-type regions.
Abstract:
A semiconductor light receiving element has a semiconductor portion. The semiconductor portion includes a substrate, a light detecting portion, and a filter portion. The substrate, the light detecting portion, and the filter portion are provided sequentially in a direction of a predetermined axis. The light detecting portion has a light absorbing layer including a III-V semiconductor layer, a window layer including a III-V semiconductor layer, and an anode semiconductor region. The light absorbing layer is an n or i conductivity type semiconductor layer. The light absorbing layer is provided between a III-V semiconductor layer and the window layer. The light detecting portion is provided on one face of the semiconductor substrate with the III-V semiconductor layer interposed therebetween. The filter portion includes InGaAsP semiconductor layers and III-V semiconductor layers.
Abstract:
The present invention relates to a high-sensitivity top-electrode and bottom-illuminated type photodiode. The device consists of a highly doped buffer layer, a photo-detecting layer on a semi-insulating substrate. An electrode is formed on the conductive domain that is formed in the photo-detecting layer, and another electrode is formed on the partly exposed peripheral area of the highly-doped buffer layer by removing a part of the photo-detecting layer. As the semi-insulating substrate absorbs less light in the substrate, a decrease of sensitivity by the substrate absorption can be prevented.
Abstract:
InGaAs photodiodes are produced on an epitaxial InP wafer having an InP substrate, epitaxially grown layers and an InGaAs light sensing layer. An insulating protection film of SixNy or SiOx with openings is selectively deposited on the epitaxial wafer. Compound semiconductor undercoats of a compound semiconductor with a narrower band gap than InP are grown on the InP window layers at the openings by utilizing the protection film as a mask. A p-type impurity from a solid source or a gas source is diffused through the undercoats and the epitaxial InP layer into the InGaAs sensing layer. Then, either p-electrodes are formed on the undercoats and the undercoats are etched by utilizing the p-electrodes as a mask, or the undercoats are shaped by selective etching in a form of p-electrodes and the p-electrodes are formed on the undercoats.
Abstract:
A method for manufacturing semiconductor light-receiving elements is provided. The method includes the steps of forming an epitaxial layer including a light-receiving layer composed of at least In, Ga, and As on an n-InP substrate by supplying at least In gas, Ga gas, and As gas to a surface of the n-InP substrate from one side of a container accommodating the n-InP substrate, forming a p-type layer in the configuration of a floating island by thermally diffusing a p-type impurity into the light-receiving layer, and separating the n-InP substrate on which the p-type layer has been formed into semiconductor light-receiving elements.
Abstract:
A light-receiving element includes a light-receiving layer for receiving light, the light-receiving layer being disposed on a semiconductor substrate, a contact layer disposed on the light-receiving layer, and a pixel electrode that is in ohmic contact with the contact layer. A back surface of the semiconductor substrate functions as a light-incident surface, and a reaction-preventing film for preventing a chemical reaction between the contact layer and the pixel electrode is interposed in a predetermined region between the contact layer and the pixel electrode.
Abstract:
A photodiode array for near infrared rays that includes photodiodes having a uniform size and a uniform shape, has high selectivity for the wavelength of received light between the photodiodes, and has high sensitivity with the aid of a high-quality semiconducting crystal containing a large amount of nitrogen, a method for manufacturing the photodiode array, and an optical measurement system are provided. The steps of forming a mask layer 2 having a plurality of openings on a first-conductive-type or semi-insulating semiconductor substrate 1, the openings being arranged in one dimension or two dimensions, and selectively growing a plurality of semiconductor layers 3a, 3b, and 3c including an absorption layer 3b in the openings are included.