Abstract:
Described herein are methods, systems, and apparatuses to utilize an electro-optic modulator including one or more heating elements. The modulator can utilize one or more heating elements to control an absorption or phase shift of the modulated optical signal. At least the active region of the modulator and the one or more heating elements of the modulator are included in a thermal isolation region comprising a low thermal conductivity to thermally isolate the active region and the one or more heating elements from a substrate of the PIC.
Abstract:
Embodiments describe optical devices including a first waveguide, comprising a first cross-sectional area, to receive a light comprising a first optical mode, and a second waveguide, adjacent to the first waveguide, to receive a light comprising a second optical mode orthogonal to the first optical mode. The second waveguide comprises a second cross-sectional area different than the first waveguide such that an absorption/gain coefficient of the second waveguide for light comprising the second optical mode is equal to an absorption/gain coefficient of the first waveguide for light comprising the first optical mode. The optical devices may comprise modulators, photodetectors, or semiconductor optical amplifiers (SOAs).
Abstract:
Embodiments of the invention describe wavelength stabilization of selective optical components (e.g., multiplexers, de-multiplexers) using optical mode steering. An additional waveguide structure is coupled to the free propagation region of the selective optical component; this additional waveguide structure moves a spatial position or a direction of a propagation of an optical mode at the free propagation region in order to adjust a wavelength response of the component. By moving the position or direction of the optical mode, the wavelength response of the component may be changed; in other words, by tuning the position or direction of the optical mode, a component's wavelength/channel response is “remapped” to account for the mis-targeting (i.e., wavelength shift) related to a temperature change or a design/manufacturing defect.
Abstract:
Embodiments of the invention describe a skew directional coupler for a plurality of waveguides. Said coupler includes a first waveguide on a first plane and a second waveguide on a second plane separate from the first plane. In embodiments of the invention, the first waveguide is disposed on top of the second waveguide to form an overlapping region of a segment of the first waveguide and a segment of the second waveguide, wherein an optical axis of the segment of the first waveguide is horizontally skew to an optical axis of the segment of the second waveguide, and wherein light is to be passively transmitted between the first and second waveguide segments via mode hybridization.
Abstract:
Embodiments of the invention describe integrating a phase shifting component into a cavity of a laser. Said phase shifter is capable of a continuous phase shift at a single wavelength over a large range (where the maximum energy consumption of the phase shifting component does not scale with the phase shifting range). In other words, said phase shifter is used to form a configurable optical cavity length for a laser. Embodiments of the invention thus utilize a plurality of optical cavity lengths—including one or more optical cavity lengths to potentially shift the phase of the output optical signal, to maintain a laser cavity's output wavelength and avoid spatial mode-hops in the presence of fluctuations such as temperature drift or changes to the drive current of the laser.
Abstract:
An optical system can lock a wavelength of a tunable laser to a specified wavelength of a temperature-insensitive spectral profile of a spectral filter. In some examples, the spectral filter, such as a Fabry-Perot filter, can have a temperature-insensitive peak wavelength and increasing attenuation at wavelengths away from the peak wavelength. The spectral filter can spectrally filter the laser light to form filtered laser light. A detector can detect at least a fraction of the filtered laser light. Circuitry coupled to the detector and the laser can tune the tunable laser to set a signal from the detector to a specified value corresponding to a specified wavelength in the spectral profile, and thereby adjust the selectable wavelength of the tunable laser to match the specified wavelength. In some examples, the optical system can include a polarization rotator, and can use polarization to separate incident light from return light.
Abstract:
Described herein are optical sensing devices for photonic integrated circuits (PICs). A PIC may comprise a plurality of waveguides formed in a silicon on insulator (SOI) substrate, and a plurality of heterogeneous lasers, each laser formed from a silicon material of the SOI substrate and to emit an output wavelength comprising an infrared wavelength. Each of these lasers may comprise a resonant cavity included in one of the plurality of waveguides, and a gain material comprising a non-silicon material and adiabatically coupled to the respective waveguide. A light directing element may direct outputs of the plurality of heterogeneous lasers from the PIC towards an object, and one or more detectors may detect light from the plurality of heterogeneous lasers reflected from or transmitted through the object.
Abstract:
Described herein are methods, systems, and apparatuses to utilize an electro-optic modulator including one or more heating elements. The modulator can utilize one or more heating elements to control an absorption or phase shift of the modulated optical signal. At least the active region of the modulator and the one or more heating elements of the modulator are included in a thermal isolation region comprising a low thermal conductivity to thermally isolate the active region and the one or more heating elements from a substrate of the PIC.
Abstract:
The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.
Abstract:
The wavelength response of an arrayed waveguide grating can be tuned, in accordance with various embodiments, using a beam sweeper including one or more heaters to shift a lateral position of light focused by the beam sweeper at an interface of the beam sweeper with an input free propagation region of the arrayed waveguide grating.