Abstract:
A solid solution-comprising ceramic article useful in semiconductor processing, which is resistant to erosion by halogen-containing plasmas. The solid solution-comprising ceramic article is formed from a combination of yttrium oxide and zirconium oxide. In a first embodiment, the ceramic article includes ceramic which is formed from yttrium oxide at a molar concentration ranging from about 90 mole % to about 70 mole %, and zirconium oxide at a molar concentration ranging from about 10 mole % to about 30 mole %. In a second embodiment, the ceramic article includes ceramic which is formed from zirconium oxide at a molar concentration ranging from about 96 mole % to about 94 mole %, and yttrium oxide at a molar concentration ranging from about 4 mole % to about 6 mole %.
Abstract:
Embodiments of the invention provide a robust bonding material suitable for joining semiconductor processing chamber components. Other embodiments provide semiconductor processing chamber components joined using a bonding material having metal filler disposed in an adhesive layer. Other embodiments include methods for manufacturing a semiconductor processing chamber component having a bonding material that includes metal filled disposed in an adhesive layer. The metal filler is suitable for reacting with halogen containing plasmas such that a halogen based metal layer is formed on the exposed portion of the bonding material upon exposure to the plasma.
Abstract:
A light source is described where the light emitted by a solid-state light emitting device such as an LED is coupled into an optical waveguide such as an optical fiber. A highly reflective coupler (reflector) is disposed around the LED and a segment of the waveguide adjacent the LED. Light emitted from the LED that falls outside of the numerical aperture of the waveguide leaks out of the waveguide, but is reflected back to the waveguide by the reflector. The reflected light is re-reflected or scattered by the LED or the substrate the LED is mounted on, and the re-reflected or scattered light that falls within the numerical aperture of the waveguide is coupled into the waveguide. As a result, light coupling efficiency is increased and the output brightness of the light at the other end of the fiber is enhanced.
Abstract:
Method of removing damaged silicon carbide crystalline structure from the surface of a silicon carbide component. The method comprises at least two liquid chemical treatment processes, where one treatment converts silicon carbide to silicon oxide, and another treatment removes silicon oxide. The liquid chemical treatments are typically carried out at a temperature below about 100° C. The time period required to carry out the method is generally less than about 100 hours.
Abstract:
A processing method described herein provides a method of patterning a MoSe2 and/or Mo material, for example a layer of such material(s) in a thin-film structure. According to one aspect, the invention relates to etch solutions that can effectively etch through Mo and/or MoSe2. According to another aspect, the invention relates to etching such materials when such materials are processed with other materials in a thin film photovoltaic device. According to other aspects, the invention includes a process of etching Mo and/or MoSe2 with selectivity to a layer of CIGS material in an overall process flow. According to still further aspects, the invention relates to Mo and/or MoSe2 etch solutions that are useful in an overall photolithographic process for forming a photovoltaic cell and/or interconnects and test structures in a photovoltaic device.
Abstract:
Disclosed is a system and methods for accelerating network protocol processing for devices configured to process network traffic at relatively high data rates. The system incorporates a hardware-accelerated protocol processing module that handles steady state network traffic and a software-based processing module that handles infrequent and exception cases in network traffic processing.
Abstract:
A system (18) for controlling a safety system (44) of a vehicle (10) is disclosed herein. The system includes a longitudinal acceleration sensor (36), a vehicle or wheel speed sensor(s) (20), a lateral acceleration sensor (32), a yaw rate sensor (28), and a controller (26). The controller determines a stability index and provides a first observer that determines a reference longitudinal velocity in response to the sensors. The controller determines a reference lateral velocity in response to the sensors. The controller provides a second observer that determines a second longitudinal velocity in response to the sensors and a first adjustment based on the reference longitudinal velocity. The controller determines a second lateral velocity in response to the sensors and a second adjustment based on the reference lateral velocity. The controller determines an output lateral velocity and an output longitudinal velocity in response to the first and second observers and the stability index and accordingly controls the safety system.
Abstract:
A contact trip assembly for a power nailer, wherein a contact member includes a curved portion that loops rearwardly towards a handle of the nailer. Also provided is an adjustment assembly including an adjustment plate and a pinion gear, a trigger that is slidably engageable within a housing of the tool, a trigger lock including a ring element, an anti-discharge mechanism including a stop member, and a contact trip lock.
Abstract:
Methods of applying specialty ceramic materials to semiconductor processing apparatus, where the specialty ceramic materials are resistant to halogen-comprising plasmas. The specialty ceramic materials contain at least one yttrium oxide-comprising solid solution. Some embodiments of the specialty ceramic materials have been modified to provide a resistivity which reduces the possibility of arcing within a semiconductor processing chamber.
Abstract:
A vehicle control system includes a housed sensor cluster generating a plurality of signals. An integrated controller includes a sensor signal compensation unit and a kinematics unit, wherein the sensor signal compensation unit receives at least one of the plurality of signals and compensates for an offset within the signal and generates a compensated signal as a function thereof. The integrated controller further generates a kinematics signal including a sensor frame with respect to an intermediate axis system as a function of the compensated signal and generates a vehicle frame signal as a function of the kinematics signal. A dynamic system controller receives the vehicle frame signal and generates a dynamic control signal in response thereto. A safety device controller receives the dynamic control signal and further generates a safety device signal in response thereto.