Abstract:
Apparatuses for manipulating a collapsible medical device include a sheath, a first shaft including a first grasping member and a second grasping member. The second grasping member is separated from the first grasping member by a distance. The collapsible medical device may be manipulated by actuating the first grasping member and the second grasping member and by increasing the distance between the first grasping member and the second grasping member. Methods of using the apparatuses are provided.
Abstract:
A valve may have a fluid inlet and a fluid outlet. The valve may include a valve stem having a lumen extending from a first opening at a proximal portion of the valve stem to a second opening at a distal end of the valve stem. A plurality of seals may be positioned relative to the valve stem. The valve stem and seals may be configured so that a fluid entering the inlet is prevented from flowing to the outlet in a first position of the valve stem and relative to the inlet and the outlet. The valve stem and the seals may be configured so that a fluid entering the inlet flows to the outlet in a second position of the valve stem relative to the inlet and the outlet, the second position being more distal than the first position relative to the inlet and the outlet.
Abstract:
A medical cleaning valve (or cleaning valve) may be configured to provide cleaning functionality to fluid (e.g., air and water) channels of an endoscope. Many embodiments described herein may include a cleaning valve (or valve) that is appropriate for single-use and therefore may be disposable. Accordingly, the valve may be made from a limited number of parts and materials, e.g., to limit its cost and/or manufacturing complexity. For example, multiple seals may be integrally formed with a valve stem. In another example, the valve may have an interface member, which may combine and simplify the functionality of a number of components, such as by connecting the valve stem to a valve well, sealing an opening to a lumen in the valve stem, and/or biasing the valve stem into a position relative to the valve well.
Abstract:
Methods and systems for coupling gas and water supply tubes to a container. An illustrative container and tube set may comprise a container configured to contain a fluid, the container having a bottom portion and a top portion, a water supply tube including a first end, a second end, and a first lumen, a gas supply tube including a first end, a second end, and a second lumen, and a weight coupled to the first end of the water supply tube and a first end of the gas supply tube. The first lumen may be in selective fluid communication with the bottom portion of the container and the second end of the water supply tube positioned external to the container. The second lumen may be in operative fluid communication with the container and the second end of the gas supply tube is positioned external to the container.
Abstract:
A valve may have a fluid inlet and a fluid outlet. The valve may include a valve stem having a lumen extending from a first opening at a proximal portion of the valve stem to a second opening at a distal end of the valve stem. A plurality of seals may be positioned relative to the valve stem. The valve stem and seals may be configured so that a fluid entering the inlet is prevented from flowing to the outlet in a first position of the valve stem and relative to the inlet and the outlet. The valve stem and the seals may be configured so that a fluid entering the inlet flows to the outlet in a second position of the valve stem relative to the inlet and the outlet, the second position being more distal than the first position relative to the inlet and the outlet.
Abstract:
Methods and systems for refilling a container during an endoscopic procedure. An illustrative container may comprise a container configured to contain a fluid, a water supply tube including a first end, a second end, and a first lumen extending therethrough and in fluid communication with the bottom portion of the container, a gas supply tube including a first end, a second end, and a second lumen extending therethrough and in operative fluid communication with container, a manifold configured to couple the water supply tube and the gas supply tube to the container and including a first end positioned interior to the container and a second end positioned exterior to the container, and a port positioned adjacent to the top portion of the container. The port may be configured to be in selective fluid communication with an interior of the container.
Abstract:
Stent delivery systems and methods for making and using stent delivery systems are disclosed. An example stent delivery system may include an inner shaft. A deployment sheath may be disposed about the inner shaft. A stent may be disposed between the inner shaft and the deployment sheath. A stent reconstraining member may be secured to an inner surface of the deployment sheath and releasably secured to the stent.
Abstract:
This disclosure relates generally to a container and tube set and methods for fluid delivery, and particularly an integrated container and tube set suitable for use with an endoscope to supply liquids and/or gases to the endoscope. The integrated container and tubes may include a container (e.g., water reservoir) containing a fluid and a gas, and a plurality of tubes integrally formed with the container. The integrated container may include an irrigation supply tube having a first lumen in fluid communication with the fluid, a lens wash supply tube having a second lumen in fluid communication with the fluid, a gas supply tube having a third lumen in operative communication with the gas, and an optional alternative gas supply tube having a fourth lumen in fluid communication with the gas. The lens wash supply tube and the gas supply tube may be formed as a single, multi-lumen tube.
Abstract:
A tubular prosthesis that includes a scaffolding formed by at least one scaffolding filament; a cover; and at least one controlled ingrowth feature constructed and arranged to abut an inner surface of a lumen wall when the prosthesis is implanted in the body lumen. The controlled ingrowth feature may extend inwards or outwards from the prosthesis outer surface. The controlled ingrowth feature may be formed by a scaffolding filament; by a separate filament; by the cover; and combinations thereof.
Abstract:
A medical cleaning valve (or cleaning valve) may be configured to provide cleaning functionality to fluid (e.g., air and water) channels of an endoscope. Many embodiments described herein may include a cleaning valve (or valve) that is appropriate for single-use and therefore may be disposable. Accordingly, the valve may be made from a limited number of parts and materials, e.g., to limit its cost and/or manufacturing complexity. For example, multiple seals may be integrally formed with a valve stem. In another example, the valve may have an interface member, which may combine and simplify the functionality of a number of components, such as by connecting the valve stem to a valve well, sealing an opening to a lumen in the valve stem, and/or biasing the valve stem into a position relative to the valve well.