Abstract:
Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the system includes a base with a curved surface, and a cold-formed glass substrate removably disposed on the curved surface, wherein the curved surface and the glass substrate each have a radius of curvature within 10% of one another. The base may include a center console, a dashboard, an arm rest, a pillar, a seat back, a floor board, a headrest, a door panel, or a steering wheel. In one or more embodiments, the curved surface includes a display, and the glass substrate is disposed at least partially over the display. Methods for forming such systems are also disclosed.
Abstract:
Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the system includes a base with a curved surface, and a display or touch panel disposed on the curved surface. The display includes a cold-bent glass substrate with a thickness of 1.5 mm or less and a first radius of curvature of 20 mm or greater, and a display module and/or touch panel attached to the glass substrate having a second radius of curvature that is within 10% of the first radius of curvature. Methods for forming such systems are also disclosed.
Abstract:
Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the system includes a base with a curved surface, and a display or touch panel disposed on the curved surface. The display includes a cold-bent glass substrate with a thickness of 1.5 mm or less and a first radius of curvature of 20 mm or greater, and a display module and/or touch panel attached to the glass substrate having a second radius of curvature that is within 10% of the first radius of curvature. Methods for forming such systems are also disclosed.
Abstract:
Embodiments of an article comprising a cold-formed glass substrate in a curved shape, a plurality of separate mechanical retainers, and a frame are disclosed. The cold-formed glass substrate has a first major surface, and a second major surface opposing the first major surface. In one more embodiments, the plurality of separate mechanical retainers are attached to the second major surface of the cold-formed glass substrate. The mechanical retainers may be attached to the frame to define a position for each of the plurality of mechanical retainers, such that the mechanical retainers define the curved shape. Embodiments of processes to form such articles are also provided. Such processes can include attaching a plurality of separate mechanical retainers to a flexible glass substrate such that the glass substrate maintains its flexibility, and attaching the mechanical retainers to a frame, such that the mechanical retainers attached to the frame define a cold-formed curved shape for the flexible glass substrate.
Abstract:
Embodiments of a curved vehicle display including a display module having a display surface, a curved glass substrate disposed on the display surface having a first major surface, a second major surface having a second surface area, and a thickness in a range from 0.05 mm to 2 mm, wherein the second major surface comprises a first radius of curvature of 200 mm or greater, wherein, when the display module emits a light, the light transmitted through the glass substrate has a substantially uniform color along 75% or more of the second surface area, when viewed at a viewing angle at a distance of 0.5 meters from the second surface. Methods of forming a curved vehicle display are also disclosed.
Abstract:
Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the system includes a base with a curved surface, and a display or touch panel disposed on the curved surface. The display includes a cold-bent glass substrate with a thickness of 1.5 mm or less and a first radius of curvature of 20 mm or greater, and a display module and/or touch panel attached to the glass substrate having a second radius of curvature that is within 10% of the first radius of curvature. Methods for forming such systems are also disclosed.
Abstract:
Embodiments of a vehicle interior system are disclosed. In one or more embodiments, the system includes a base with a curved surface, and a cold-formed glass substrate removably disposed on the curved surface, wherein the curved surface and the glass substrate each have a radius of curvature within 10% of one another. The base may include a center console, a dashboard, an arm rest, a pillar, a seat back, a floor board, a headrest, a door panel, or a steering wheel. In one or more embodiments, the curved surface includes a display, and the glass substrate is disposed at least partially over the display. Methods for forming such systems are also disclosed.
Abstract:
Methods and apparatus provide for a structure, including: a first glass material layer; and a second material layer bonded to the first glass material layer via bonding material, where the bonding material is formed from one of glass frit material, ceramic frit material, glass ceramic frit material, and metal paste, which has been melted and cured.
Abstract:
Embodiments of a vehicle interior system and methods for forming the same are disclosed. A glass substrate is bent to a curved shape within a mold cavity, and a liquid polymer material is delivered to the mold and is in contact with the curved glass substrate. The liquid polymer is solidified to form a polymer frame that engages the bent glass substrate, and the engagement between the frame and the glass substrate holds the glass substrate in the bent shape. The temperature of the glass substrate during the bending process and formation of the frame are maintained below the glass transition temperature of the glass substrate.
Abstract:
A glass article comprises a glass substrate having a first major surface and a second major surface, the second major surface being opposite the first major surface and a decorative ink layer disposed on the second major surface of the decorative ink layer and a conductive ink layer disposed on the second major surface. The conductive ink layer comprises conductive material dispersed in a dispersion medium and a sheet resistance that is less than a sheet resistance of the decorative ink layer. The conductive ink layer comprises a plurality of sensing structures arranged in a touch sensing circuit configured to vary in electrical properties in response to electromagnetic interactions with an external object.