Abstract:
An ablation probe fixation apparatus for securing an ablation probe to tissue includes a base having a top surface and a skin-contacting bottom surface, wherein the base includes an adhesive layer disposed on the skin-contacting bottom surface. The fixation apparatus also includes a fixation member coupled to the top surface of the base. The base and the fixation member include an aperture defined therein for insertion of the ablation probe therethrough.
Abstract:
Disclosed are systems and methods of lymphatic specimen tracking, visualization, and lymph node drainage pathway determination. An exemplary method includes receiving computed tomographic (CT) image data corresponding to a CT scan, generating a three-dimensional (3D) model of at least a portion of a patient's body based on the CT image data, identifying one or more lymph nodes in the 3D model, performing a registration of the 3D model with one or more physical locations in the patient's body, determining an expected lymph node drainage pathway away from a region of interest through one or more lymph nodes, and displaying the 3D model and the expected lymph node drainage pathway.
Abstract:
Provided in accordance with the present disclosure are systems, devices, and methods for displaying medical images based on a location of a camera. In an exemplary embodiment, a method includes receiving image data of a patient's body, identifying an organ in the image data, generating a three-dimensional (3D) model of at least a portion of the patient's body based on the image data, registering the 3D model with the patient's body, determining a location of a camera inside the patient's body, identifying a 2D slice image from the image data based on the determined location of the camera inside the patient's body, and displaying the 2D slice image.
Abstract:
Devices and methods for cooling microwave antennas are disclosed herein. The cooling systems can be used with various types of microwave antennas. One variation generally comprises a handle portion with an elongate outer jacket extending from the handle portion. A microwave antenna is positioned within the handle and outer jacket such that cooling fluid pumped into the handle comes into contact directly along a portion of the length, or a majority of the length, or the entire length of the antenna to allow for direct convective cooling. Other variations include cooling sheaths which form defined cooling channels around a portion of the antenna. Yet another variation includes passively-cooled systems which utilize expandable balloons to urge tissue away from the surface of the microwave antenna as well as cooling sheaths which are cooled through endothermic chemical reactions. Furthermore, the microwave antennas themselves can have cooling lumens integrated directly therethrough.
Abstract:
A triaxial microwave antenna assembly is disclosed. The triaxial microwave antenna includes a feedline having an inner conductor, a central conductor disposed about the inner conductor and an outer conductor disposed about the central conductor and a radiating portion including a high frequency radiating section and a low frequency radiating section.
Abstract:
A method of performing an ablation procedure includes inserting an antenna assembly into tissue and supplying energy thereto for application to tissue. The method also includes causing contact between a first material and at least one other material disposed within the antenna assembly to thermally regulate the antenna assembly. According to another embodiment, an ablation system includes an energy delivery assembly. A first chamber is defined within the energy delivery assembly and is configured to hold a first chemical. Another chamber is defined within the energy delivery assembly and is configured to hold at least one other chemical. The first chamber and the other chamber are configured to selectively and fluidly communicate with each other to cause contact between the first chemical and the at least one other chemical to cause an endothermic reaction and/or an exothermic reaction.
Abstract:
A device for directing energy to a target volume of tissue includes an antenna assembly and an elongated body member. The elongated body member includes a proximal end portion and a distal end portion, wherein the proximal and distal end portions define a longitudinal axis. The elongated body member has a chamber defined therein that extends along the longitudinal axis, and a body wall surrounding the chamber. An antenna assembly is disposed in the chamber. The elongated body member also includes an opening in the body wall to allow energy radiated from the antenna assembly to transfer into the target volume of tissue.
Abstract:
Various high-strength microwave antenna assemblies are described herein. The microwave antenna has a radiating portion connected by a feedline to a power generating source, e.g., a generator. The antenna is a dipole antenna with the distal end of the radiating portion being tapered and terminating at a tip to allow for direct insertion into tissue. Antenna rigidity comes from placing distal and proximal radiating portions in a pre-stressed state, assembling them via threaded or overlapping joints, or fixedly attaching an inner conductor to the distal portion. The inner conductor is affixed to the distal portion by, e.g., welding, brazing, soldering, or by adhesives. A junction member made from a hard dielectric material, e.g., ceramic, can be placed between the two portions and can have uniform or non-uniform shapes to accommodate varying antenna designs. Electrical chokes may also be used to contain returning currents to the distal end of the antenna.
Abstract:
According to one embodiment of the present disclosure a microwave ablation system is disclosed. The microwave ablation system includes an energy source adapted to generate microwave energy and a plurality of energy delivery devices having a first energy delivery device configured to be inserted into tissue and to generate a non-directional ablation volume and a second energy delivery device configured to be positioned relative to the tissue and to generate a directional ablation volume. The system also includes a power dividing device having an input adapted to connect to the energy source and a plurality of outputs configured to be coupled to the plurality of energy delivery devices. The power dividing device is configured to selectively divide energy provided from the energy source between the plurality of energy delivery devices.
Abstract:
Devices and methods for cooling microwave antennas are disclosed herein. The cooling systems can be used with various types of microwave antennas. One variation generally comprises a handle portion with an elongate outer jacket extending from the handle portion. A microwave antenna is positioned within the handle and outer jacket such that cooling fluid pumped into the handle comes into contact directly along a portion of the length, or a majority of the length, or the entire length of the antenna to allow for direct convective cooling. Other variations include cooling sheaths which form defined cooling channels around a portion of the antenna. Yet another variation includes passively-cooled systems which utilize expandable balloons to urge tissue away from the surface of the microwave antenna as well as cooling sheaths which are cooled through endothermic chemical reactions. Furthermore, the microwave antennas themselves can have cooling lumens integrated directly therethrough.