Abstract:
An isolated switching mode power supply, having: an input terminal; an output terminal; a transformer having a primary winding and a secondary winding; a primary power switch coupled to the primary winding; a secondary power switch coupled between the secondary winding and the output terminal of the power supply; a secondary controller configured to generate a frequency modulation signal based on the output voltage and the first feedback signal; a coupled device configured to provide a frequency control signal based on the output voltage and the frequency modulation signal; and a primary controller configured to provide a switching signal to control the primary power switch based on the current sense signal and the frequency control signal.
Abstract:
A ripple suppression circuit has a filter circuit and a follower circuit. The filter circuit has a first input terminal coupled to a signal source to receive a ripple signal and an output terminal to output a filter signal which is the sum of the average value of the ripple signal and a positive bias signal. The follower circuit has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is coupled to the signal source to receive the ripple signal, the second input terminal is coupled to the output terminal of the filter circuit to receive the filter signal, the follower circuit provides an output signal at the output terminal, the output signal at least partially follows the filter signal.
Abstract:
An isolated switching converter includes a transformer having a primary winding, a secondary winding and an auxiliary winding, a primary switch coupled to the primary winding, a secondary switch coupled to the secondary winding, and a feedback circuit coupled to the auxiliary winding to generate a feedback signal indicative of the output voltage. Under normal operation, the primary switch is controlled based on the feedback signal and the secondary switch is controlled based on the status of the primary switch. Under light load condition, the secondary switch is controlled based on the output voltage. The secondary switch is turned on to generate a negative secondary current flowing through the secondary winding and turned off when the negative secondary current reaches a secondary current threshold. The primary switch is turned on based on a negative primary current and turned off when the primary current reaches a primary current threshold.
Abstract:
A ripple suppression circuit has a filter circuit and a follower circuit. The filter circuit has a first input terminal coupled to a signal source to receive a ripple signal and an output terminal to output a filter signal which is the sum of the average value of the ripple signal and a positive bias signal. The follower circuit has a first input terminal, a second input terminal and an output terminal, wherein the first input terminal is coupled to the signal source to receive the ripple signal, the second input terminal is coupled to the output terminal of the filter circuit to receive the filter signal, the follower circuit provides an output signal at the output terminal, the output signal at least partially follows the filter signal.
Abstract:
An isolated switching mode power supply, having: a transformer having a primary winding, a secondary winding and a third winding; a current limit comparator configured to provide a current limit signal based on the current sense signal and the peak current signal; a logic circuit configured to provide a logic control signal based on the frequency control signal and the current limit signal; a startup control circuit configured to generate a startup control signal based on the current sense signal; a load detecting circuit configured to provide a load detecting signal based on the second feedback signal and the switching signal; and a selector configured to provide the logic control signal or the startup control signal based on the load detecting signal.
Abstract:
A peak sample circuit for AC voltage, including: a rectifier coupled to receive an AC voltage and to rectify the AC voltage to generate a rectified signal; a delay circuit coupled to receive the rectified signal and to delay the rectified signal to generate a delayed rectified signal; a comparison circuit coupled to receive the delayed rectified signal and to generate a square signal based on the comparison of the rectified signal and the delayed rectified signal; and a sample output circuit coupled to receive the rectified signal, wherein the sample output circuit samples the rectified signal under the control of the square signal and provides a peak sample signal representative of the peak value of the AC voltage.
Abstract:
A multi-phase switching converter comprising a plurality of switching circuits, a comparing circuit and a control circuit. The comparing circuit generates a comparison signal based on a reference signal and the output voltage of the multi-phase switching converter. The control circuit can turn on the following switching circuit based on the comparison signal only after the time from the current switching circuit being turned on reaches a first time threshold or the off-time of the current switching circuit reaches a second time threshold, wherein the first time threshold is longer than the second time threshold.