Abstract:
A power bank having an input terminal; an output terminal; a battery; a bidirectional switch circuit coupled between the battery and the output terminal of the power bank; and a select circuit coupled between the input terminal and the output terminal of the power bank; wherein when the input terminal is wired up with a power source, and the load is powered by the power source, and meanwhile, the battery is charged by the power source via the select circuit and the bidirectional switch circuit; when the input terminal is disconnected from the power source, the load is powered by the battery via the bidirectional switch circuit.
Abstract:
A PFC circuit includes: a switching circuit having a power switch; an on time control circuit for controlling an on time period of the power switch; a first off time control circuit; a second off time control circuit; and a logic circuit selectively controls the power switch working under CCM or DCM; when working under CCM, the first off time control circuit controls an off time period of the power switch and when working under DCM, the second off time control circuit controls the off time period of the power switch.
Abstract:
A switching charger having a control circuit configured to provide a control signal; a power stage turned ON and OFF by the control signal; an inductor coupled between the power stage and a load; and an output capacitor coupled in parallel with the load; a current sense circuit integrated to the control circuit to sense a current flowing through the power stage.
Abstract:
A LED driver, a LED driving method and a controller for LED driver are discussed in the present invention. The LED driver detects the phase of the input signal which is phase cut by a triac from a pre-E-transformer. The LED driver regulates the current flowing through the LED strings by varying the phase of the input signal.
Abstract:
An AC signal detector having: a rectify circuit having a first input terminal and a second input terminal configured to receive an AC signal, and an output terminal configured to provide a rectified signal based on the AC signal; a detecting circuit having an input terminal coupled to the output terminal of the rectify circuit to receive the rectified signal, and an output terminal configured to provide a square signal based on the rectified signal; and an unplug indicate circuit having an input terminal coupled to the detecting circuit to receive the square signal, and an output terminal configured to provide an unplug indicate signal based on the square signal.
Abstract:
A switching mode power supply, having: an input port; an output port; an energy storage component and a pair of power switches coupled between input port and the output port; an error amplifier configured to generate an amplified error signal based on the feedback signal and the reference signal; an error comparator configured to generate a frequency control signal based on the amplified error signal and the first sawtooth signal; a peak current generator configured to generate a peak current signal based on the frequency control signal; a peak current comparator configured to generate a current limit signal based on the peak current signal and the current sense signal; and a logic circuit configured to generate a switching signal to control the power switches based on the frequency control signal and the current limit signal.
Abstract:
A peak sample circuit for AC voltage, including: a rectifier coupled to receive an AC voltage and to rectify the AC voltage to generate a rectified signal; a delay circuit coupled to receive the rectified signal and to delay the rectified signal to generate a delayed rectified signal; a comparison circuit coupled to receive the delayed rectified signal and to generate a square signal based on the comparison of the rectified signal and the delayed rectified signal; and a sample output circuit coupled to receive the rectified signal, wherein the sample output circuit samples the rectified signal under the control of the square signal and provides a peak sample signal representative of the peak value of the AC voltage.
Abstract:
A LED driver, a LED driving method and a controller for LED driver are discussed in the present invention. The LED driver detects the phase of the input signal which is phase cut by a triac from a pre-E-transformer. The LED driver regulates the current flowing through the LED strings by varying the phase of the input signal.
Abstract:
An AC signal detector having: a rectify circuit having a first input terminal and a second input terminal configured to receive an AC signal, and an output terminal configured to provide a rectified signal based on the AC signal; a detecting circuit having an input terminal coupled to the output terminal of the rectify circuit to receive the rectified signal, and an output terminal configured to provide a square signal based on the rectified signal; and an unplug indicate circuit having an input terminal coupled to the detecting circuit to receive the square signal, and an output terminal configured to provide an unplug indicate signal based on the square signal.
Abstract:
A switching mode power supply, having: an input port; an output port; an energy storage component and a pair of power switches coupled between input port and the output port; an error amplifier configured to generate an amplified error signal based on the feedback signal and the reference signal; an error comparator configured to generate a frequency control signal based on the amplified error signal and the first sawtooth signal; a peak current generator configured to generate a peak current signal based on the frequency control signal; a peak current comparator configured to generate a current limit signal based on the peak current signal and the current sense signal; and a logic circuit configured to generate a switching signal to control the power switches based on the frequency control signal and the current limit signal.