Abstract:
The invention relates generally to dimeric molecular complexes comprising two fusion proteins. Each fusion protein comprises a biological effector moiety, a polypeptide spacer sequence, and an IgE CH4 dimerization domain. The dimeric molecular complexes may be conjugated, at a defined site, to other molecules including drug moieties, cytotoxic agents, labels (such as detectable labels), or biocompatible polymers.
Abstract:
The disclosure relates to methods of making polymer particles, said methods including the steps of: making an aqueous gel reaction mixture; forming an emulsion having dispersed aqueous phase micelles of gel reaction mixture in a continuous phase; adding an initiator oil comprising at least one polymerization initiator to the continuous phase; and performing a polymerization reaction in the micelles. Further, the initiator oil is present in a volume % relative to a volume of the aqueous gel reaction mixture of between about 1 vol % to about 20 vol %. The disclosure also relates to methods of making nucleic acid polymer particles having the same method steps and wherein the aqueous gel reaction mixture includes a nucleic acid fragment, such as a primer.
Abstract:
The invention provides particle compositions having applications in nucleic acid analysis. Nucleic acid polymer particles of the invention allow polynucleotides to be attached throughout their volumes for higher loading capacities than those achievable solely with surface attachment. In one aspect, nucleic acid polymer particles of the invention comprise polyacrylamide particles with uniform size distributions having low coefficients of variations, which result in reduced particle-to-particle variation in analytical assays. Such particle compositions are used in various amplification reactions to make amplicon libraries from nucleic acid fragment libraries.
Abstract:
This invention is directed to compounds of formula (I): where r, q, R, R2, R3, R4, R5a, R5b, R5c, R6a, R6b, R6c, R7, R8, and R9 are described herein, as single stereoisomers or as mixtures of stereoisomers, or pharmaceutically acceptable salts, solvates, clathrates, polymorphs, ammonium ions, N-oxides or prodrugs thereof; which are leukotriene A4 hydrolase inhibitors and therefore useful in treating inflammatory disorders. Pharmaceutical compositions comprising the compounds of the invention and methods of preparing the compounds of the invention are also disclosed.
Abstract:
This invention relates to novel fusion proteins which are comprised of a targeting protein that binds tissue factor (TF), which is operably linked to the thrombomodulin (TM) EGF456 domain alone or in combination with at least one other TM domain selected from the group consisting of the N-terminal hydrophobic region domain, the EGF123 domain, the interdomain loop between EGF3 and EGF4, and the O-glycosylated Ser/Thr-rich domain, or analogs, fragments, derivatives or variants thereof. The fusion protein binds at the site of injury and prevents the initiation of thrombosis. The fusion protein can be used to treat a variety of thrombotic conditions including but not limited to deep vein thrombosis, disseminated intravascular coagulation, and acute coronary syndrome.
Abstract:
This invention relates to novel fusion proteins which are comprised of a targeting protein that binds tissue factor (TF), which is operably linked to the thrombomodulin (TM) EGF456 domain alone or in combination with at least one other TM domain selected from the group consisting of the N-terminal hydrophobic region domain, the EGF123 domain, the interdomain loop between EGF3 and EGF4, and the O-glycosylated Ser/Thr-rich domain, or analogs, fragments, derivatives or variants thereof. The fusion protein binds at the site of injury and prevents the initiation of thrombosis. The fusion protein can be used to treat a variety of thrombotic conditions including but not limited to deep vein thrombosis, disseminated intravascular coagulation, and acute coronary syndrome.
Abstract:
A method is disclosed for making a microelectronic package. A material is applied to a first major surface of a microelectronic element to reduce the heights of protrusions projecting from the first major surface. The microelectronic element is assembled to a microelectronic component. A method of forming protrusions and an assembly incorporating the microelectronic element having protrusions is also disclosed.
Abstract:
Leads are connected between first and second elements so that a first end of each lead is connected to the first element and a second end of each lead is connected to the second element. and the elements are moved away from one another so as to bend the leads towards a vertically-extensive disposition. The direction of each lead, prior to the movement step, is represented by a lead direction vector from the first end of the lead to the second end of the same lead. At least some of these lead direction vectors are non-parallel with at least some other lead direction vectors, but the various lead direction vectors have components in a common direction. During the vertical movement step, the first element is moved in a horizontal direction of motion in this common direction, thereby moving the first end of each lead horizontally toward the second end of that lead, so as to provide or maintain slack in the leads.
Abstract:
A flexible sheet used in manufacture of microelectronic components is held on a frame formed from a rigid material so that the frame maintains the sheet under tension during processing and thereby stabilizes the dimensions of the sheet. The frame may be formed from a rigid, light-transmissive material such as a glass, and the bond between the frame and sheet may be made or released by light transmitted through the frame. Preferred features of the framed sheet minimize entrapment of processing liquids such as etch solutions, thereby minimizing carryover of processing solutions between steps. The frame may have contact openings which permit engagement of a metallic layer on the sheet by an electrode carrying electroplating or etching current without disturbing the main portion of the sheet where features are to be formed or treated.
Abstract:
A flexible sheet used in manufacture of microelectronic components is held on a frame formed from a rigid material so that the frame maintains the sheet under tension during processing and thereby stabilizes the dimensions of the sheet. The frame may be formed from a rigid, light-transmissive material such as a glass, and the bond between the frame and sheet may be made or released by light transmitted through the frame. Preferred features of the framed sheet minimize entrapment of processing liquids such as etch solutions, thereby minimizing carryover of processing solutions between steps. The frame may have contact openings which permit engagement of a metallic layer on the sheet by an electrode carrying electroplating or etching current without disturbing the main portion of the sheet where features are to be formed or treated.