Abstract:
A method for planning a multi-phase network includes storing initial parameter values for parameters associated with first and second growth phases in a multi-phase network plan, wherein each of the first and second growth phases is characterized by sets of the parameters. The method also includes calculating an initial growth scenario including the first and second growth phases based on the initial parameter values, and adjusting a value for at least one of the parameters to produce a modified parameter value. The method further includes automatically calculating a new growth scenario based on the modified parameter value and at least a portion of the initial parameter values, and displaying the new growth scenario. A computer readable medium for implementing the method described herein is also provided.
Abstract:
An all-optical cross-connect switching system provides optical switching that may reduce processing requirements by three orders of magnitude over conventional techniques by associating at least one optical detector with an optical beam steering element. In one embodiment, a first beam steering element, having a reflective surface in optical association with a first optical fiber array, and a second beam steering element, having a reflective surface in optical association with a second optical fiber array, are optically arranged to direct an optical beam from a first optical fiber in the first optical fiber array to a second optical fiber in the second optical fiber array. The optical detector provides information about a first position of the optical beam on the second beam steering element. Based on this information, the angle of the first beam steering element may be adjusted to cause the optical beam to change to a second position on the second beam steering element.
Abstract:
A method for planning a network having a plurality of nodes. The method may include determining all possible rings in the network satisfying a predetermined condition and calculating a utilization score for each possible ring based on a combination of predetermined selection criteria. The method may include selecting the possible ring with the highest utilization score and determining whether there are remaining nodes among the plurality of nodes that are not included in the selected possible ring. The method may further include selecting another possible ring if it is determined there are remaining nodes.
Abstract:
A method for managing nodes in a network includes assigning to a cycle set a cycle having a size of n, the preferred maximum nodes per cycle, or smaller. If this cycle set does not include the all of the nodes in the network, the method includes increasing n by one and assigning to the cycle set a cycle that accesses at least one of the nodes not currently in the cycle set and has a size n, until the cycle set includes all of the nodes in the network. The method further includes moving from the cycle set to a final set a cycle that accesses a node that is accessed by only that particular cycle. If this final set does not include all of the nodes in the network, the method includes moving a remaining cycle from the cycle set to the final set wherein the remaining cycle carries a largest intracycle traffic among cycles in the cycle set, until the final set includes all of the nodes in the network. Finally, the method includes designating the cycles in the final set as the cycles connecting the nodes in the network.
Abstract:
A contamination detection apparatus is provided for measuring an amount of contamination on an optically transmitting element or pane. The optically transmitting element is capable of transmitting electromagnetic radiation. The contamination detection apparatus includes a contamination detection (CD) radiation source for providing a source intensity of radiation. The source intensity or radiation passes through the optically transmitting element at least one time. A reference detector is also provided for detecting the source intensity of radiation, and the reference detector has a reference output level that is representative of the source intensity.
Abstract:
When planning and maintaining a network, it may be very difficult for a network provider to organize variations of equipment rack installations at several different sites. Present methods of planning installation configurations in a network involve planning the same equipment installation configuration at all sites, planning a limited number of variations, or planning multiple variations but, with difficulty, tracking and changing configurations. A method or corresponding apparatus in an example embodiment of the present invention provides a tool for simplifying the planning of multiple network element installation configurations at multiple sites within a network. The benefits include fewer required truck rolls, resulting in reduced costs before and after deployment of installation configurations. In one embodiment, the disclosed planning tool allows users to access and change generic installation configurations according to customizable options to allow users to produce and store customized templates of multiple network element installation configurations.
Abstract:
Optical networks occasionally experience a fault along a communications path. Service providers prefer to have an alternative communications path available to enable users to still communicate in a seamless manner. Accordingly, a method and corresponding apparatus for providing path protection for dedicated paths in an optical network is provided.
Abstract:
A method for planning a multi-phase network includes storing initial parameter values for parameters associated with first and second growth phases in a multi-phase network plan, wherein each of the first and second growth phases is characterized by sets of the parameters. The method also includes calculating an initial growth scenario including the first and second growth phases based on the initial parameter values, and adjusting a value for at least one of the parameters to produce a modified parameter value. The method further includes automatically calculating a new growth scenario based on the modified parameter value and at least a portion of the initial parameter values, and displaying the new growth scenario. A computer readable medium for implementing the method described herein is also provided.
Abstract:
Increasing data rates in next-generation optical networks requires a change in the type of optical modulation used to encode optical signals carried by the optical networks. Different types of optical modulation incur different optical impairments, which may degrade the fidelity of the optical signals by reducing the optical signal-to-noise ratio (OSNR). A method or corresponding apparatus in an example embodiment of the present invention provides a planning tool for deploying an optical network in a manner based on the optical modulation that reduces the cost and complexity of the deployed network. In one embodiment, the disclosed planning tool may adjust a model of the optical network to be deployed by changing the topology and/or the number and/or type of optical network elements in response to optical impairments for a given optical modulation.
Abstract:
Optical networks occasionally experience a fault along a communications path. Service providers prefer to have an alternative communications path available to enable users to still communicate in a seamless manner. Accordingly, a method and corresponding apparatus for providing path protection for dedicated paths in an optical network is provided.