Abstract:
A card cage system is provided that includes a middle card guide interposed between two end card guides in an electronic equipment enclosure. Each of the card guides includes one or more channels adapted to receive a card edge. The middle card guide includes a removable adapter element that can permit insertion of two single wide cards in a side-by-side arrangement. When the adapter element is removed, a double-wide card can be received in the middle card guide such that it straddles the middle card guide. One or more elongate members can also be inserted in any of the card guides to add vertical or lateral stability. Thus, the card guide can be readily customized to accommodate a variety of card types and sizes, in various arrangements.
Abstract:
A card guide is provided that is suitable for use in connection with a card cage system of an electronic equipment enclosure. The card guide includes one or more engagement elements configured to interact with corresponding structure of the chassis of the electronic equipment enclosure so that the card guide lacks any degree of freedom when the card guide is positioned within a fully assembled electronic equipment enclosure. At least one of the engagement elements is configured and arranged to enage the corresponding structure of the chassis in a permanent snap-fit type arrangement.
Abstract:
Lead frame connectors for connecting optical sub-assemblies to printed circuit boards in optical transceiver modules. The lead frame connectors include a stamped and bent conductive lead structure that is encased in an insert injection molded plastic casing. The plastic casing provides electrical insulation for the conductors in the lead frame as well as mechanical support for the finished component. The lead frame connectors connect to the leads associated with the optical sub-assemblies and are surface mounted onto the printed circuit board to establish connectivity between the optical sub-assembly and the printed circuit board. The lead frame assemblies are generally more reliable and less expensive than using flexible printed circuit board structures to establish electrical connectivity between optical sub-assemblies and transceiver printed circuit boards.
Abstract:
An electronic module is provided that includes a housing having electrically conductive top and bottom housing portions in substantial contact with each other and cooperating with each other to define an opening. A printed circuit board is disposed within the housing and includes an edge connector at least partially extending through the opening in the housing. The printed circuit board also defines a non-conductive through opening configured and arranged so that the housing portions contact each other by way of the through opening. In this way, the housing portions cooperate to subdivide the opening defined by the housing into at least two relatively smaller openings that, as a result of their relatively small size, facilitate containment of electromagnetic emissions generated by the electronic module.
Abstract:
An optical transceiver module having improved heat dissipation characteristics is disclosed. The transceiver includes a transmitter optical subassembly (“TOSA”), comprising a hermetically sealed housing penetrated by a component platform that includes interior and exterior platform portions. The interior portion of the component platform supports a laser that produces optical signals for emission by the TOSA. A heat tongue is attached to the both the interior and exterior portions of the component platform and is configured to absorb heat that is produced by the laser and absorbed by the component platform. A heat spreader is positioned within the transceiver shell and includes a cavity defined adjacent the heat tongue. A slug is received into the cavity and is positioned to contact both the heat tongue and the heat spreader body. The slug enables heat from the tongue to be transmitted to the heat spreader and eventually to the transceiver shell.
Abstract:
The principles of the present invention provide for a plastic ROSA that has a metallic EMI shroud covering a portion of the plastic ROSA. The combination of the plastic ROSA and the EMI shroud provides the unexpected result of having EMI shielding substantially similar to a metal ROSA.
Abstract:
The case temperature measurement device for an optoelectronic transceiver includes a case with at least one thermally conductive wall, at least one optical component at least partially disposed within the case, circuitry electrically coupled to the optical component. The circuitry includes a temperature sensor coupled to the circuitry. The case temperature measurement device also includes at least one protrusion formed on the wall of the case of the optoelectronic transceiver. The protrusion is thermally coupled to temperature sensor via a thermal pad. A method for estimating case temperature of the optoelectronic transceiver based on an internal temperature measurement and knowledge of the relationship between the measured internal temperature and the actual case temperature, and compensating for the effects of variable heat sources within the transceiver upon this estimate.
Abstract:
Methods of manufacturing optical transceiver modules using lead frame connectors that connect optical sub-assemblies to printed circuit boards are disclosed. The lead frame connector includes an electrically insulating case having a first part separated from a second part, and a plurality of conductors that are electrically isolated one from another by the electrically insulating case. Each of the plurality of conductors can form an electrical contact restrained in a fixed position with respect to the first part and a contact point extending from the second part. The electrical contact is aligned with and soldered to the leads that protrude from the back end of an optical sub-assembly. The contact points can then be connected to electrical pads on a PCB.
Abstract:
In one example embodiment, a pluggable optoelectronic module includes a shell with a front, back, and first and second sides. A first guiderail protrudes from the first side and extends from the front of the shell to the back of the shell. A second guiderail protrudes from the second side and also extends from the front of the shell to the back of the shell. A first thumbscrew runs the length of the module and is housed within the first guiderail. A second thumbscrew also runs the length of the module and is housed within the second guiderail. The two thumbscrews are configured to secure the module to a host device when the module is plugged into the host device.
Abstract:
One example of a single-layer flexible circuit may include a top flexible substrate, a bottom flexible substrate, and a conductive layer disposed therebetween. Signal traces and ground traces can be located in the conductive layer.