Abstract:
Methods and compositions for improving performance of flocculants in an industrial production process. Methods include pH triggered cross-linking reaction between a flocculating agent, such as dextran, and a composition comprising a boronic acid-containing polymer. The pH trigger can be provided by a fluid having a pH of 8 or more. The production process can be a Bayer Process and the fluid is caustic liquor or slurry in the fluid circuit of the Bayer, wherein the reaction time is reduced over conventional methods and the cross-linked dextran composition effectuates improved flocculation of the trihydrate particles.
Abstract:
Improved sparge compositions for froth flotation separation, methods of using them, and uses thereof are described. The compositions are suitably used in the froth flotation of particulate material containing ultrafine particles, and are well suited to the froth flotation separation of finely comminuted poor (low-grade) ores. The sparge compositions comprise functionalized silicone containing functionality that is tailored to the chemical nature of a beneficiary or a gangue in the ore. Sparging of the compositions effects improved recoveries and purities of beneficiaries. Sparge compositions and functionalized silicones suitable for the froth flotation of iron ores containing silica and/or silicate impurities are described. Sparge compositions and functionalized silicones suitable for the froth flotation of ores containing sulfur compounds such as sulfides are also disclosed.
Abstract:
Compositions and methods used in the modification of crystallization of aluminum hydroxide from liquor in an aluminum hydroxide production process, such as the Bayer process. More particularly, crystal growth modifier compositions comprising a component of crude corn oil derived from a bioethanol production process and/or a component of biodiesel and methods of using such compositions to modify particle size and distribution of precipitated alumina trihydrate in a precipitation liquor crystallization process.