Abstract:
Multiview calibration is essential for accurate three-dimensional computation. However, multiview calibration can not be accurate enough because of the tolerances required in some of the intrinsic and extrinsic parameters that are associated with the calibration process, along with fundamental imperfections that are associated with the manufacturing and assembly process itself. As a result, residual error in calibration is left over, with no known methods to mitigate such errors. Residual error mitigation is presented in this work to address the shortcomings that are associated with calibration of multiview camera systems. Residual error mitigation may be performed inline with a given calibration approach, or may be presented as a secondary processing step that is more application specific. Residual error mitigation aims at modifying the original parameters that have been estimated during an initial calibration process. These new, modified parameters are then used for triangulation and depth estimation of scene information. This approach also resolves parameter tolerances that are either too cumbersome to measure, or otherwise impossible to measure for practical stereo and multiview camera production and calibration applications.
Abstract:
A method and system for calibration parameter validation. The method includes performing a camera calibration generating a calibration result, applying a coarse pass-fail criteria to the calibration result and rejecting the camera if the calibration result does not pass the coarse pass fail-criteria. The method further includes applying a fine pass-fail criteria based upon at least information stored at a central repository to the calibration result if the calibration result passes the coarse pass-fail criteria, rejecting the camera if the calibration result does not pass the fine pass fail-criteria, accepting the camera if the calibration result passes the fine pass fail-criteria, and entering the calibration result into the central repository. The information stored at the central repository includes key performance indicator/key performance metric information for one or more measured parameters of the calibration result.
Abstract:
A method and apparatus for segmenting an image are provided. The method may include the steps of clustering pixels from one of a plurality of images into one or more segments, determining one or more unstable segments changing by more than a predetermined threshold from a prior of the plurality of images, determining one or more segments transitioning from an unstable to a stable segment, determining depth for one or more of the one or more segments that have changed by more than the predetermined threshold, determining depth for one or more of the one or more transitioning segments, and combining the determined depth for the one or more unstable segments and the one or more transitioning segments with a predetermined depth of all segments changing less than the predetermined threshold from the prior of the plurality of images.
Abstract:
A user, such as the driver of a vehicle, to retrieve information related to a point of interest (POI) near the vehicle by pointing at the POI or performing some other gesture to identify the POI. Gesture recognition is performed on the gesture to generate a target region that includes the POI that the user identified. After generating the target region, information about the POI can be retrieved by querying a server-based POI service with the target region or by searching in a micromap that is stored locally. The retrieved POI information can then be provided to the user via a display and/or speaker in the vehicle. This process beneficially allows a user to rapidly identify and retrieve information about a POI near the vehicle without having to navigate a user interface by manipulating a touchscreen or physical buttons.
Abstract:
A method and apparatus for segmenting an image are provided. The method may include the steps of clustering pixels from one of a plurality of images into one or more segments, determining one or more unstable segments changing by more than a predetermined threshold from a prior of the plurality of images, determining one or more segments transitioning from an unstable to a stable segment, determining depth for one or more of the one or more segments that have changed by more than the predetermined threshold, determining depth for one or more of the one or more transitioning segments, and combining the determined depth for the one or more unstable segments and the one or more transitioning segments with a predetermined depth of all segments changing less than the predetermined threshold from the prior of the plurality of images.
Abstract:
A gesture control system includes a processor, the processor in communication with a plurality of sensors. The processor is configured to perform the steps of detecting, using the plurality of sensors, a gesture in a volume occupied by a plurality of occupants, analyzing a prior knowledge to associate the gesture with one of the plurality of occupants, and generating an output, the output being determined by the gesture and the one of the plurality of occupants.
Abstract:
A gesture control system includes a processor, the processor in communication with a plurality of sensors. The processor is configured to perform the steps of detecting, using the plurality of sensors, a gesture in a volume occupied by a plurality of occupants, analyzing a prior knowledge to associate the gesture with one of the plurality of occupants, and generating an output, the output being determined by the gesture and the one of the plurality of occupants.
Abstract:
A method and system for segmenting a plurality of images. The method comprises the steps of segmenting the image through a novel clustering technique that is, generating a composite depth map including temporally stable segments of the image as well as segments in subsequent images that have changed. These changes may be determined by determining one or more differences between the temporally stable depth map and segments included in one or more subsequent frames. Thereafter, the portions of the one or more subsequent frames that include segments including changes from their corresponding segments in the temporally stable depth map are processed and are combined with the segments from the temporally stable depth map to compute their associated disparities in one or more subsequent frames. The images may include a pair of stereo images acquired through a stereo camera system at a substantially similar time.
Abstract:
A gesture control system includes a processor, the processor in communication with a plurality of sensors. The processor is configured to perform the steps of detecting, using the plurality of sensors, a gesture in a volume occupied by a plurality of occupants, analyzing a prior knowledge to associate the gesture with one of the plurality of occupants, and generating an output, the output being determined by the gesture and the one of the plurality of occupants.
Abstract:
A gesture control system includes a processor, the processor in communication with a plurality of sensors. The processor is configured to perform the steps of detecting, using the plurality of sensors, a gesture in a volume occupied by a plurality of occupants, analyzing a prior knowledge to associate the gesture with one of the plurality of occupants, and generating an output, the output being determined by the gesture and the one of the plurality of occupants.