Abstract:
Examples of combining multiple laser beams into a single laser beam by using a circular or spiral diffraction grating are described. The multiple laser beams can be combined coherently or incoherently depending on the geometrical layout of the laser beams.
Abstract:
Examples of a silicon cold plate with an integrated PCB are described. An apparatus may include a silicon plate, one or more electrical and thermal connections, and a heat-generating device. The silicon plate may include a first side and a second side opposite the first side, a plurality of edges between the first side and the second side, one or more internal coolant flow channels therein, one or more coolant inlet ports disposed on one or more of the edges and configured to allow a coolant to flow into the one or more internal coolant flow channels, and one or more coolant outlet ports disposed on one or more of the edges and configured to allow the coolant to flow out of the one or more internal coolant flow channels. The one or more electrical and thermal connections may be disposed on the first side of the silicon plate. The heat-generating device may be disposed on the one or more electrical and thermal connections.
Abstract:
Embodiments of an apparatus with a thermal management technique utilizing a silicon heat sink and/or a phase-change material, as well as an assembling method thereof, are described. In one aspect, the apparatus comprises a main unit, a phase-change material and an enclosure enclosing the main unit and the phase-change material. The main unit comprises a substrate and at least one heat-generating device disposed on the substrate. The phase-change material is in direct contact with each heat-generating device of the at least one heat-generating device to absorb and dissipate heat generated by the at least one heat-generating device.
Abstract:
Various embodiments of an apparatus that simultaneously cools and thermally decouples adjacent electrically-driven devices in close proximity are provided. In one aspect, an apparatus comprises a first non-silicon heat sink and a first silicon-based heat sink disposed on the first non-silicon heat sink. The first silicon-based heat sink is configured to receive a first electrically-driven device on a first portion of the first silicon-based heat sink and to receive a second electrically-driven device on a second portion of the first silicon-based heat sink. The first silicon-based heat sink includes a first groove or a first opening between the first portion and the second portion such that a heat conduction path between the first electrically-driven device and the first non-silicon heat sink through the first silicon-based heat sink is shorter than a heat conduction path between the first electrically-driven device and the second electrically-driven device through the first silicon-based heat sink.
Abstract:
Embodiments of a thermal management unit and an electronic apparatus utilizing the thermal management unit are described. In one aspect, the thermal management unit includes a heat sink. The heat sink includes a base portion, a first protrusion structure and a second protrusion structure. The base portion has a first side and a second side opposite the first side. The first protrusion structure protrudes from the first side of the base portion, and includes multiple fins. The second protrusion structure protrudes from the second side of the base portion, and includes multiple ribs. The heat sink may be made of silicon.
Abstract:
A low cost design for a concentrated photovoltaic (CPV) solar cell device is developed with a 3-D solar cell structure that eliminates the need for sun-ray tracking and with improved electricity conversion efficiency for cooling solar cells. The 3-D solar cell structure can be built with conventional monocrystalline or polycrystalline silicon or with multi-junction III-V solar material, joining two or more solar cell segments perpendicular to a base solar cell. This structure is able to collect all incident sunlight from sunrise to sunset.
Abstract:
Embodiments of silicon-based thermal energy transfer apparatus for a gain medium of a laser system are provided. In one aspect, a silicon-based thermal energy transfer apparatus includes silicon-based first and second manifolds each having internal coolant flow channels therein. When the first and second manifolds are coupled together, a first groove on the first manifold and a second groove on the second manifold form a through hole configured to receive the gain medium therein. The through hole has a polygonal cross section when viewed along a longitudinal axis of the gain medium.
Abstract:
A concentrated photovoltaic device that is capable of generating thermal and electrical energy from solar radiation using a three-dimensional solar cell design structure with no need for a sun-tracking system is provided. The three-dimensional solar cell structure uses liquid cooling to provide maximum energy utilization from both stored thermal and electrical solar energy.
Abstract:
A silicon-based thermal energy transfer apparatus that aids dissipation of thermal energy from a heat-generating device, such as an edge-emitting laser diode, is provided. In one aspect, the apparatus comprises a base portion and a support portion. The base portion is made of silicon and includes a first primary surface. The first primary surface includes at least first and second V-notch grooves thereon. The support portion is made of silicon and includes at least first and second edges that are interlockingly received in the first and second V-notch grooves when the support portion is mounted on the base portion.
Abstract:
A silicon-based thermal energy transfer apparatus that aids dissipation of thermal energy from a heat-generating device, such as an edge-emitting laser diode, is provided. In one aspect, the apparatus comprises a silicon-based base portion having a first primary surface and a silicon-based support structure. The silicon-based support structure includes a mounting end and a distal end opposite the mounting end with the mounting end received by the base portion such that the support structure extends from the first primary surface of the base portion. The support structure includes a recess defined therein to receive the edge-emitting laser diode. The support structure further includes a slit connecting the distal end and the recess to expose at least a portion of a light-emitting edge of the edge-emitting laser diode when the edge-emitting laser diode is received in the support structure.