Abstract:
Embodiments of an apparatus and method for sealing and cutting of tissue during surgeries, especially in general, endoscopic, laparoscopic and robotic, are described. In one aspect, an apparatus comprises a laser system and a laser beam delivery unit. The laser system comprises a tissue cutting laser configured to emit a first laser beam to cut a tissue. The laser system also comprises a tissue sealing laser configured to emit a second laser beam to seal the tissue. The laser beam delivery unit is detachably coupled to the laser system and is configured to guide and direct the first and second laser beams to cut and seal the tissue.
Abstract:
An ultraviolet C (UV-C) disinfection device includes a UV-C light-emitting diode (LED) illuminator which includes a UV-C source module and a UV-C LED coupling module. The UV-C source module includes a heat spreader and a UV LED chip that is mounted on the heat spreader which is configured to be mounted on a printed circuit board (PCB). The UV-C LED coupling module includes a holder and a rod configured to carry a UV-C light emitted from the UV-C LED chip from a first distal end of the rod to an opposite second distal end of the rod such that the UV-C light gets leaks out from a side of the rod to deliver at least a portion of the UV-C light to a surrounding of the rod, with the rod secured with the holder positioning the rod onto the UV-C chip.
Abstract:
Examples of a thermal management unit and an electronic apparatus utilizing the thermal management unit are described. In one aspect, the thermal management unit includes a heat sink. The heat sink includes a base portion, a first protrusion structure and a second protrusion structure. The base portion has a first side and a second side opposite the first side. The first protrusion structure protrudes from the first side of the base portion, and includes multiple fins. The second protrusion structure protrudes from the second side of the base portion, and includes multiple ribs. The heat sink may be made of silicon.
Abstract:
Embodiments of a silicon-based heat dissipation device and a chip module assembly are described. An apparatus includes a chip module assembly that includes a silicon-based heat dissipation device and an extended device coupled to the silicon-based heat dissipation device. The silicon-based heat dissipation device includes a base portion having a first primary side and a second primary side opposite the first primary side. The silicon-based heat dissipation device also includes a protrusion portion on the first primary side of the base portion and protruding therefrom, with the protrusion portion having a plurality of fins. The extended device includes an extended layer. The second primary side of the base portion is configured to receive one or more heat-generating devices thereon such that at least a portion of heat generated by the one or more heat-generating devices is dissipated to the silicon-based heat-dissipation device by conduction.
Abstract:
Examples of a thermal management unit and an electronic apparatus utilizing the thermal management unit are described. In one aspect, the thermal management unit includes a heat sink. The heat sink includes a base portion, a first protrusion structure and a second protrusion structure. The base portion has a first side and a second side opposite the first side. The first protrusion structure protrudes from the first side of the base portion, and includes multiple fins. The second protrusion structure protrudes from the second side of the base portion, and includes multiple ribs. The heat sink may be made of silicon.
Abstract:
Embodiments of a mechanism of thermal isolation for multiple heat-generating devices on a substrate are described. In one aspect, a substrate is configured for a plurality of heat-generating devices to be disposed thereon. The substrate comprises an electrically-conductive layer that is electrically coupled to the heat-generating devices when the heat-generating devices are disposed on the substrate. The electrically-conductive layer is configured to thermally isolate the heat-generating devices such that there is no thermal coupling through the electrically-conductive layer amongst the heat-generating devices.
Abstract:
Embodiments of a silicon-based heat dissipation device and a chip module assembly are described. An apparatus may include a silicon-based heat dissipation device, an extended device coupled to the silicon-based heat-dissipation device and heat-generating devices mounted on the silicon-based heat dissipation device. The silicon-based heat dissipation device may include a base portion having a first primary side and a second primary side opposite the first primary side. The silicon-based heat dissipation device may also include a protrusion portion on the first primary side of the base portion and protruding therefrom. The protrusion portion may include multiple fins. The base portion may include a slit opening with a first heat-generating device of the heat-generating devices on a first side of the slit opening and a second heat-generating device of the heat-generating devices on a second side of the slit opening opposite the first side of the slit opening.
Abstract:
Embodiments of a silicon-based heat dissipation device and a chip module assembly utilizing the silicon-based heat dissipation device are described. In one aspect, the chip module assembly includes a chip module and a primary heat dissipation module. The chip module includes a board and at least one heat-generating device. The board includes a first primary side and a second primary side opposite the first primary side. The at least one heat-generating device is disposed on the first primary side of the board. The primary heat dissipation module includes at least one silicon-based heat dissipation device disposed on the at least one heat-generating device.
Abstract:
Various embodiments of an apparatus that simultaneously cools and thermally decouples adjacent electrically-driven devices in close proximity are provided. In one aspect, an apparatus comprises a first non-silicon heat sink and a first silicon-based heat sink disposed on the first non-silicon heat sink. The first silicon-based heat sink is configured to receive a first electrically-driven device on a first portion of the first silicon-based heat sink and to receive a second electrically-driven device on a second portion of the first silicon-based heat sink. The first silicon-based heat sink includes a first groove or a first opening between the first portion and the second portion such that a heat conduction path between the first electrically-driven device and the first non-silicon heat sink through the first silicon-based heat sink is shorter than a heat conduction path between the first electrically-driven device and the second electrically-driven device through the first silicon-based heat sink.
Abstract:
A silicon-based thermal energy transfer apparatus that aids dissipation of thermal energy from a heat-generating device, such as an edge-emitting laser diode, is provided. In one aspect, the apparatus comprises a base portion and a support portion. The base portion is made of silicon and includes a first primary surface. The first primary surface includes at least first and second V-notch grooves thereon. The support portion is made of silicon and includes at least first and second edges that are interlockingly received in the first and second V-notch grooves when the support portion is mounted on the base portion.