Abstract:
A method of estimating a time to collision (TTC) of a vehicle with an object comprising: acquiring a plurality of images of the object; and determining a TTC from the images that is responsive to a relative velocity and relative acceleration between the vehicle and the object.
Abstract:
A system mounted on a vehicle for detecting an obstruction on a surface of a window of the vehicle, a primary camera is mounted inside the vehicle behind the window. The primary camera is configured to acquire images of the environment through the window. A secondary camera is focused on an external surface of the window, and operates to image the obstruction. A portion of the window, i.e. window region is subtended respectively by the field of view of the primary camera and the field of view of the secondary camera. A processor processes respective sequences of image data from both the primary camera and the secondary camera.
Abstract:
A vehicle warning system that includes: a first camera mounted on the vehicle at a first longitudinal position along the length of the vehicle, which acquires consecutively in real time a plurality of first camera image frames; a second camera mounted on the vehicle at a second longitudinal position along the length of the vehicle, which acquires second camera image frames; and a processor configured to use information in both first and second camera image frames to determine whether there is a danger of a collision between the vehicle and an object shown in both the first and second camera images. The first and second longitudinal positions may be at different positions along the length of the vehicle.
Abstract:
A traffic sign recognition system including a detection mechanism adapted for detecting a candidate traffic sign and a recognition mechanism adapted for recognizing the candidate traffic sign as being an electronic traffic sign. A partitioning mechanism may be adapted for partitioning the image frames into a first partition and a second partition. The detection mechanism may use the first portion of the image frames and the recognition mechanism may use the second portion of the image frames. When the candidate traffic sign is detected as an electronic traffic sign, the recognition mechanism may use both the first partition of the image frames and the second portion of the image frames.
Abstract:
A vehicle warning system that includes: a first camera mounted on the vehicle at a first longitudinal position along the length of the vehicle, which acquires consecutively in real time a plurality of first camera image frames; a second camera mounted on the vehicle at a second longitudinal position along the length of the vehicle, which acquires second camera image frames; and a processor configured to use information in both first and second camera image frames to determine whether there is a danger of a collision between the vehicle and an object shown in both the first and second camera images. The first and second longitudinal positions may be at different positions along the length of the vehicle.
Abstract:
A system mounted on a vehicle for performing vehicle control applications and driver warning applications, the system including a camera configured to acquire a plurality of images of the environment in front of the camera. The camera includes a filter wherein the filter is installed at the focal plane of the camera and wherein designated portions of the filter transmit selective light wavelength. The preferred filter has a checkerboard pattern. The system further including an image processor capable of analyzing in real time a plurality of respective image sequences acquired from at least one of the portions of the filter and is capable of detecting yellow lane markings on a concrete road surface.
Abstract:
A method is provided using a system mounted in a vehicle. The system includes a rear-viewing camera and a processor attached to the rear-viewing camera. When the driver shifts the vehicle into reverse gear, and while the vehicle is still stationary, image frames from the immediate vicinity behind the vehicle are captured. The immediate vicinity behind the vehicle is in a field of view of the rear-viewing camera. The image frames are processed and thereby the object is detected which if present in the immediate vicinity behind the vehicle would obstruct the motion of the vehicle. The processing is preferably performed in parallel for a plurality of classes of obstructing objects using a single image frame of the image frames.
Abstract:
A navigation system may include at least one processing device configured to determine, based on an output of one or more position sensors associated with the navigation system, a current location of at least one component associated with the navigation system and determine a destination location different from the current location. The navigation system may also acquire, from one or more image acquisition devices, a plurality of images representative of an environment of a user of the navigation system and derive, from the plurality of images, visual information associated with at least one object in the environment. The system may also determine one or more instructions for navigating from the current location to the destination location, wherein the one or more instructions include at least one reference to the visual information derived from the plurality of images. The system may also deliver to the user the one or more instructions.
Abstract:
A camera mount for mounting a camera inside a windshield of a vehicle. The camera includes a lens mount and a camera housing. The front tip of the lens mount is constrained to be in close proximity to or constrained to contact the inside of the windshield for different rake angles of the windshield.
Abstract:
Systems and methods use cameras to provide autonomous navigation features. In one implementation, a driver-assist object detection system is provided for a vehicle. One or more processing devices associated with the system receive at least two images from a plurality of captured images via a data interface. The device(s) analyze the first image and at least a second image to determine a reference plane corresponding to the roadway the vehicle is traveling on. The processing device(s) locate a target object in the first two images, and determine a difference in a size of at least one dimension of the target object between the two images. The system may use the difference in size to determine a height of the object. Further, the system may cause a change in at least a directional course of the vehicle if the determined height exceeds a predetermined threshold.