Abstract:
In an embodiment, a fluid ejection device includes a substrate with a fluid slot formed therein, a chamber layer formed on the substrate defining fluid chambers on both sides of the fluid slot, a thin-film layer between the substrate and chamber layer that defines an ink feedhole (IFH) between the fluid slot and the chamber layer, and a chamber layer extension that forms a bridge across the IFH between two chambers.
Abstract:
An exemplary embodiment of the present invention provides for a fluid ejection device. The fluid ejection device includes a substrate, a conductive layer, a resistive layer, and at least one upper layer. The conductive layer is disposed on the substrate and an outer perimeter and an inner region thinner than the outer perimeter. The outer perimeter includes conductive elements spaced apart from one another. The resistive layer includes an outer resistive portion overlying the conductive elements and a central resistive portion lying on top of a raised bridge of the substrate, wherein the width of the raised bridge is substantially greater than the width of the central resistive portion. The at least one upper layer defines a boundary of a fluid chamber, and the boundary is aligned vertically above a border of the central resistive portion.
Abstract:
In one example implementation, a printhead die includes a SiO2 layer grown into a surface of a silicon substrate, a dielectric layer formed on the surface over an interior area of the substrate, a first termination ring surrounding the interior area and defined by an absence of the dielectric layer, a berm surrounding the first termination ring and defined by the presence of the dielectric layer, a damage detection conductor formed under the berm on the SiO2 layer, and a second termination ring surrounding the berm and defined by an absence of the dielectric layer.
Abstract:
Aspects of the present disclosure are directed to an apparatus including a circuit region and a fluidic region. In a particular example, the circuit region with logical circuits thereon, includes a thermal oxide layer on a silicon substrate, and a dielectric layer over the field oxide layer, the dielectric layer including a doped dielectric film. The microfluidic device further includes a fluidic region including fluid ports formed through a surface of the apparatus and including an un-doped dielectric film. The fluidic region includes an aperture in the dielectric layer, where the aperture is defined by a dielectric wall which forms part of the dielectric layer. A sealing film deposited over the dielectric wall may prevent the doped dielectric film from contacting fluid contained in the fluid port.
Abstract:
In various examples, a fluid ejection device may include a fluid ejection die formed with a first material and that includes a bondpad and a plurality of fluid ejectors, and a cover layer adjacent the fluid ejection die. The cover may be formed with a second material that is different than the first material and may include a first region that overlays the bondpad and a second region that overlays the plurality of fluid ejectors. In various examples, the first and second regions are separated by a break in the cover layer. The break may be filled with a third material that is different than one or both of the first and second material.
Abstract:
A method includes applying a mold chase to a fluid ejection die to at least partially define at least one cavity. The mold chase includes a feature to contact a fluid ejection portion of the fluid ejection die, and at least one structure separate from the feature to contact a first end portion adjacent a first end of the fluid ejection die. The method includes filling the at least one cavity with a mold compound to produce a molded carrier for the fluid ejection die.
Abstract:
A die for a printhead is described herein. The die includes a number of fluid feed holes disposed in a line parallel to a longitudinal axis of the die. A number of fluidic actuators are disposed in a line parallel to the fluid feed holes. A crack detector trace is routed between each of the plurality of fluid feed holes.
Abstract:
A die for a printhead is described herein. The die includes a number of fluid feed holes disposed in a line parallel to a longitudinal axis of the die, wherein the fluid feed holes are formed through a substrate of the die. The die includes a number of fluidic actuators, proximate to the fluid feed holes, to eject fluid received from the fluid feed holes. Circuitry on the die operates the fluidic actuators, wherein traces are provided in layers between adjacent fluid feed holes, connecting circuitry on each side of the fluid feed holes.
Abstract:
A method of adhering a cover layer to a substrate includes forming an array of nano-structures on a substrate. A flowable material is applied to the substrate, the flowable material substantially enveloping the nano-structures on the substrate. The flowable material is solidified to form a cover layer on the substrate, the cover layer being anchored to the substrate via the nano-structures.
Abstract:
Examples include a fluid ejection device comprising a molded panel, an ejection die molded in the molded panel, and an integrated circuit molded in the molded panel. The ejection die comprises ejection nozzles to selectively dispense printing material. The integrated circuit receives nozzle data and controls the selective dispensation of printing material by the ejection nozzles based at least in part on the nozzle data. The molded panel has a fluid communication channel formed therethrough and fluidly connected to the ejection die.