Abstract:
A head-up display system and method are provided that suppress double images from a combiner by eliminating or reducing a reflection of a refracted image from the back surface of the combiner. The combiner contains a tilted axis polarizing structure that attenuates transmittance and subsequent reflection of a refracted polarized projector image but maintains high transmittance for the forward external scene imagery.
Abstract:
Methods and systems for operating a vehicular near-to-eye (NTE) display screen operable within an operational range limit are provided. An image is rendering on the NTE display screen within a predefined visibility range. The predefined visibility range is within the operational range limit. A luminance of at least a portion of the image is reduced in response to the NTE display screen being moved outside of the predefined visibility range and within the operational range limit.
Abstract:
An active window display (AWD) system having a first surface that provides a wide field of view image for cross-cockpit viewing that is readable against sunlight illumination is provided. The displayed image in the AWD is not visible from a backside (or second surface) of the AWD. The AWD system further capably switches from transmitting wavelengths to being opaque, to block the optical emissions associated with a displayed image from escaping the backside or second surface.
Abstract:
Systems and methods of controlling the touch sensitivity of a projected capacitive touch detection system are provided. The temperature that is at least representative of the touch sensitive region temperature is sensed. Based on the sensed temperature, the numbers of the capacitive touch sensors that have different strength electric fields applied thereto are varied and/or the relative magnitudes of the different electric fields are varied. When installed in a vehicle, the operational state of the vehicle may also impact this operation.
Abstract:
An augmented display system with dynamic see-through transmittance control is disclosed. The augmented display system includes: an augmented display screen; a tandem electrochromic (EC) filter disposed over the augmented display screen. The tandem EC filter includes a first window having a dominant first transmittance characteristic and a second window having a dominant second transmittance characteristic; and an augmented display transmittance controller configured to individually control the activation of the first window and the second window of the tandem EC filter, wherein the augmented display transmittance controller is configured to: determine from an ambient light sensor output the transmittance required from the first window and the second window for a selected augmented display luminance; and apply appropriate drive voltage waveforms to the first window and the second window to achieve the determined transmittance.
Abstract:
An optical tracker system is provided for tracking a location and orientation of a first object. The system includes a prediction module configured to determine a predicted location and orientation of the first object as a spatial prediction; a display module configured to generate display commands for a fiducial symbol based on the spatial prediction; a display unit configured to display the fiducial symbol based on the display commands; a camera unit configured to capture an image of the fiducial symbol displayed on the display device as a captured appearance; and a position determination module coupled to the camera unit and configured to receive the image from camera unit. The position determination module is configured to identify the fiducial symbol and determine the location and the orientation of the first object based on the captured appearance of the fiducial symbol.
Abstract:
Provided is a compact display system and method for creating, with minimal volume, a focused, high quality, full color, large FOV virtual image characterized by eye-limited spatial resolution. The provided compact display (i) enables a flexible range of eye relief, and (ii) enables a large exit pupil.
Abstract:
A method for detecting and correcting drift associated with operation of a hybrid tracking system is provided. The method obtains a data signal from a first tracker subsystem having a first tracker latency time; for a defined window of time, the method captures snapshot input data for a second tracker subsystem having a second tracker latency time which is longer than the first tracker latency time; and captures synchronized data from the data signal which corresponds to the defined window of time; wherein the defined window of time comprises a time duration shorter than the second tracker latency time, to capture the snapshot input data. The method further calculates second tracker snapshot results from the captured snapshot input data for the second tracker subsystem; calculates first tracker snapshot results from the captured synchronized data from the first tracker subsystem; calculates an error between the first tracker snapshot results and the second tracker snapshot results, to determine a level of drift associated with operation of the first tracker subsystem; and adjusts operation of the first tracker subsystem according to the determined level of drift.
Abstract:
A system and method are provided for leveraging emitted polarized electromagnetic radiation as a means to track relative orientation and position of an object with regard to another object. Six basic degrees of freedom including three angular and three translational are determined based on making multiple polarization-based measurements and then determining the corresponding geometry that would yield those measurements.
Abstract:
A system and method of displaying a conformal-capable head-up display image is provided. Distortions caused by combiner curvature, for example, are removed by pre-distorting and projecting separate images for each eye. Shutter-based eyewear controls the visibility as the imagery is cycled, e.g., shuttered, between left and right eyes. The combined image generator, projector and eyewear system maintains minimal vergence errors, minimal dipvergence errors, acceptable average transmittance, and optionally, high conformality.