Abstract:
Disclosed is a method for speech speaker recognition of a speech speaker recognition apparatus, the method including detecting effective speech data from input speech; extracting an acoustic feature from the speech data; generating an acoustic feature transformation matrix from the speech data according to each of Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA), mixing each of the acoustic feature transformation matrixes to construct a hybrid acoustic feature transformation matrix, and multiplying the matrix representing the acoustic feature with the hybrid acoustic feature transformation matrix to generate a final feature vector; and generating a speaker model from the final feature vector, comparing a pre-stored universal speaker model with the generated speaker model to identify the speaker, and verifying the identified speaker.
Abstract:
A non-volatile semiconductor memory device may include a memory cell array that may include a plurality of memory transistors; a input circuit that may control a voltage level of an internal reference voltage and a delay time of an internal clock signal in response to an MRS trim code or an electric fuse trim code, and that may generate a first buffered input signal; a column gate that may gate the first buffered input signal in response to a decoded column address signal; and a sense amplifier that may amplify an output signal of the memory cell array to output to the column gate, and that may receive an output signal of the column gate to output to the memory cell array. The non-volatile semiconductor memory device may properly buffer an input signal of a small swing range.
Abstract:
A user recognizing system and method is provided. According to the user recognizing system and method, user ID and predetermined user feature information are stored, first and second user feature information are extracted from the user image data transmitted from the image input unit, and first and second probabilities that the extracted first and second user feature information determine the predetermined user are respectively generated based on the information stored at the user information database, the first user feature information being absolutely unique biometric information and the second user feature information being unique semibiometric information under a predetermined condition, and ID of the input image is finally determined by combining the first probability and the second probability. According to the user recognizing system and method, a user identity can be authenticated even when the user freely moves.
Abstract:
A non-volatile memory device using a variable resistive element is provided. The non-volatile memory device includes a memory cell array having a plurality of non-volatile memory cells, a first voltage generator configured to generate a first voltage, a voltage pad configured to receive an external voltage that has a level higher than the first voltage, a write driver configured to be supplied with the external voltage and configured to write data to the plurality of non-volatile memory cells selected from the memory cell array; a sense amplifier configured to be supplied with the external voltage and configured to read data from the plurality of non-volatile memory cells selected from the memory cell array, and a row decoder and a column decoder configured to select the plurality of non-volatile memory cells included in the memory cell array, the row decoder being supplied with the first voltage and the column decoder being supplied with the external voltage.
Abstract:
A non-volatile memory device includes a set pulse generator configured to generate a set pulse, a reset pulse generator configured to generate a reset pulse based on the set pulse, and a write driver block configured to write second data to a second non-volatile memory cell using the reset pulse, while writing first data to a first non-volatile memory cell using the set pulse.
Abstract:
A semiconductor device according to example embodiments may be configured so that, when a read command for performing a read operation is input while a write operation is performed, and when a memory bank accessed by a write address during the write operation is the same as a memory bank accessed by a read address during the read operation, the semiconductor device may suspend the write operation automatically or in response to an internal signal until the read operation is finished and performs the write operation after the read operation is finished.
Abstract:
A phase change memory device performs a program operation by receiving program data to be programmed in selected memory cells, sensing read data already stored in the selected memory cells by detecting respective magnitudes of verify currents flowing through the selected memory cells when a verify read voltage is applied to the selected memory cells, determining whether the read data is identical to the program data, and upon determining that the program data for one or more of the selected memory cells is not identical to the corresponding read data, programming the one or more selected memory cells with the program data.
Abstract:
A nonvolatile memory device may include a memory cell array with a plurality of nonvolatile memory cells arranged in an array of rows and columns. Each of a plurality of bit lines may be coupled to nonvolatile memory cells in a respective one of the columns of the array, and each of a plurality of column selection switches may be coupled to a respective one of the bit lines. A column decoder may be coupled to the plurality of column selection switches, and the column decoder may be configured to select a first one of the bit lines using a first column selection signal having a first signal level applied to a first one of the column selection switches. The column decoder may be further configured to select a second one of the bit lines using a second column selection signal having a second signal level applied to a second one of the column selection switches with the second signal level being different than the first signal level.
Abstract:
A nonvolatile memory device may include a memory cell array having a plurality of nonvolatile memory cells arranged in a matrix including a plurality of rows of the nonvolatile memory cells. Each of a plurality of word lines may be coupled with nonvolatile memory cells of a respective row of the matrix. A row decoder may be coupled to the plurality of word lines with the row decoder being configured to disable at least one of the word lines using a row bias having a level that is adjusted responsive to changes in temperature. Such a nonvolatile memory device may operate with reduced standby currents.
Abstract:
A nonvolatile memory device may include a memory cell array with a plurality of nonvolatile memory cells arranged in an array of rows and columns. Each of a plurality of bit lines may be coupled to nonvolatile memory cells in a respective one of the columns of the array, and each of a plurality of column selection switches may be coupled to a respective one of the bit lines. A column decoder may be coupled to the plurality of column selection switches, and the column decoder may be configured to select a first one of the bit lines using a first column selection signal having a first signal level applied to a first one of the column selection switches. The column decoder may be further configured to select a second one of the bit lines using a second column selection signal having a second signal level applied to a second one of the column selection switches with the second signal level being different than the first signal level.