Abstract:
The disclosure provides some embodiments for securing long training field (LTF) sequence. A responding station (RSTA) configures a location management report (LMR) frame. The LMR frame is configured to include an LMR in respect of a previous measurement, and data to be used to generate a null data packet (NDP) for a current measurement that is to be performed following the previous measurement. The RSTA further encrypts the LMR frame using protected management frames (PMF) scheme, and transmits the encrypted LMR frame to an initiating station (ISTA) for generating an LTF sequence for the current measurement. In response to receiving an NDP announcement (NDPA) and an NDP for the current measurement from the ISTA, the RSTA generates an NDP for the current measurement based on the NDPA and the data using CCMP, and transmits the NDP to the ISTA.
Abstract:
Methods, apparatuses, and computer readable media for report identification and power control for ranging in a wireless network are disclosed. An apparatus of a responding station (RSTA) is disclosed, where the apparatus comprises processing circuitry configured to perform ranging with a initiating stations (ISTAs) and maintain a separate sounding dialogue token for each of the ISTAs and transmit a corresponding sounding dialogue token for a ISTA in a trigger frame for ranging and sounding or a null data packet announcement (NDPA) frame, and in a responding to initiating location measurement report. Apparatuses of RSTAs and ISTAS are disclosed that perform power control management during non-trigger-based ranging.
Abstract:
Certain embodiments herein relate to a dynamic pre-association between Neighbor Awareness Networking (NAN) discovery windows and fine timing measurement (FTM) communications. A wireless station may trigger an FTM procedure during a NAN discovery window by the transmission of a NAN Service Discovery Frame (SDF). In addition to the FTM communications, an indication of a discovery window for which a subsequent FTM communication is expected to occur is also transmitted. In some embodiments, an FTM range report may also be transmitted with the indication.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of performing a Time of Flight (ToF) measurement. For example, a first wireless device may include a controller to perform a Time of Flight (ToF) measurement procedure with a second wireless device; and a radio to communicate with the second wireless device a ToF frame including a first time value of a Time Synchronization Function (TSF) of a sender of the frame to indicate a beginning time of a ToF measurement period, and a second time value of the TSF at transmission of the ToF frame.
Abstract:
This disclosure describes methods, apparatus, and systems related to low power signaling. A device may identify a service request to establish a service with a first device. The device may extract information from the service request. The device may generate a wake-up packet based at least in part on the extracted information. The device may cause to send the wake-up packet to a second device.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of performing a range measurement. For example, a first wireless communication device may include a radio to communicate a discovery frame with a second wireless communication device, the discovery frame including at least one movement indication field to indicate a time of movement of a sender of said discovery frame; and a controller to perform a range measurement procedure with said second wireless communication device.
Abstract:
In a navigation system and method, location-aware adjustments may be made to the accuracy and/or power of the navigation system by changing at least one setting of a navigation system receiver in response to at least one characteristic of a navigation route and/or an estimated current position of the receiver. By providing location-aware adjustments, the accuracy may be increased when a higher accuracy is desired and may be decreased when a lower accuracy is sufficient based on the receiver location. A higher accuracy setting may be used, for example, when the estimated current position of a navigation system receiver is within the vicinity of a waypoint along the navigation route and a lower accuracy setting may be used at other times to reduce power consumption. Of course, many alternatives, variations, and modifications are possible without departing from this embodiment.
Abstract:
Embodiments of a communication station and method for time-of-flight (ToF) location determination in a wireless network are generally described herein. In some embodiments, a responding communication station receives a ToF measurement request. The responding communication station transmits an acknowledgment of the ToF measurement request. The responding communication station also transmits a response to the ToF measurement request that includes an indication of a time period for an initiating communication station to poll the responding communication station for a ToF result.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of performing a range measurement. For example, a first wireless communication device may include a radio to communicate a discovery frame with a second wireless communication device, the discovery frame including at least one movement indication field to indicate a time of movement of a sender of said discovery frame; and a controller to perform a range measurement procedure with said second wireless communication device.
Abstract:
Some demonstrative embodiments include apparatuses, systems and/or methods of estimating a location of a mobile device. For example, an apparatus may include a controller to control a mobile device to transmit a first message to a wireless communication station (STA) and to receive a first acknowledgement (ACK) message from the STA in response to the first message, when the mobile device is at a first location, wherein the controller to control the mobile device to transmit a second message to the STA and to receive a second ACK message from the STA in response to the second message, when the mobile device is at a second location, wherein the controller is to determine a distance difference between a first distance and a second distance based on a first round trip time and a second round trip time, the first distance being between the first location and the STA, the second distance being between the second location and the STA, wherein the first round trip time includes a round trip time of the first message and first ACK, and the second round trip time includes a round trip time of the second message and second ACK.