Abstract:
In an organic electroluminescence (EL) display apparatus, a bus line is provided on an edge of a display unit in a display panel. A feedback circuit unit is provided outside of the bus line, and an output voltage of the feedback circuit unit is applied to a connecting part on the bus line. To the feedback circuit unit, a reference voltage from a reference voltage generating unit is applied, a power supply voltage from a power supply unit is supplied, and a monitoring voltage from the connecting part on the bus line is fed back. The feedback circuit unit includes a switching control circuit and a transistor, and controls, using a feedback, the output voltage by supplying or blocking the power supply voltage to an output terminal, so that a voltage at the connecting point is equal to a target voltage determined by the reference voltage.
Abstract:
A luminescent display device includes a substrate and a thin-film transistor above the substrate. The thin-film transistor includes a semiconductor layer, a gate insulating film on the semiconductor layer, a gate electrode on the gate insulating film, a source electrode, and a drain electrode. The luminescent display device further includes an interlayer insulating film on the gate electrode, a first capacitor electrode on the interlayer insulating film in a region above the gate electrode, and a luminescent element configured to be driven by a driver to produce luminescence. The driver includes the thin-film transistor, and the first capacitor electrode and the gate electrode constitute a capacitor.
Abstract:
A display device includes: a display unit in which light-emitting pixels are disposed in rows and columns; and a control circuit controlling the display unit. The light-emitting pixels each include: a light-emitting element (organic EL element); and a drive transistor which supplies the light-emitting element with a current causing the light-emitting element to emit light, and the control circuit, when display by the display unit is stopped, calculates an amount of shift of a threshold voltage of the drive transistor at a time when a stopped state of the display unit is started, and determines on the basis of the amount of shift, at least one of (i) a recovery voltage which reduces the amount of shift by being applied across a gate and source of the drive transistor while the display by the display unit is stopped, and (ii) an application period during which the recovery voltage is applied.
Abstract:
A luminescent display device includes a substrate and a thin-film transistor above the substrate. The thin-film transistor includes a semiconductor layer, a gate insulating film on the semiconductor layer, a gate electrode on the gate insulating film, a source electrode, and a drain electrode. The luminescent display device further includes an interlayer insulating film on the gate electrode, a first capacitor electrode on the interlayer insulating film in a region above the gate electrode, and a luminescent element configured to be driven by a driver to produce luminescence. The driver includes the thin-film transistor, and the first capacitor electrode and the gate electrode constitute a capacitor.
Abstract:
A method for driving a display device including a plurality of pixels arranged in rows and columns, each of the pixels including an organic EL device that emits light in accordance with supplied current, a driving transistor that supplies current to the organic EL device, and a storage capacitor connected between the gate of driving transistor and a source or drain thereof, includes causing the organic EL device to emit light by supplying current to the organic EL device; resetting charge of at least one of the storage capacitor and a parasitic capacitance of the organic EL device; and applying a reverse bias voltage between the gate and source of the driving transistor. The resetting is performed between the light emission and the reverse-bias application.
Abstract:
A method for driving a display device that includes a display unit and is driven by a sequence of row-by-row sequential scanning that includes a vertical blanking period, the display unit having pixels arranged in rows and columns, each pixel including an anode formed on a drive circuit layer, an organic light emitting layer formed above the anode and including a light emitting substance, and a transparent cathode formed above the organic light emitting layer, the method includes initializing a circuit element, writing a signal voltage to a capacitive element, inserting a black display to display the black display during a period determined based on a resistance value of the transparent cathode, and causing the organic EL element to emit light.
Abstract:
By a drive method, for each of a plurality of display pixels each including an EL element, a capacitor, a drive transistor, an enable switch, and a switch, a period T21 is started by switching only the enable switch to an electrically conductive state before a period T22 in which the drive transistor is initialized, and the period T22 following the period T21 is started by switching the switch to an electrically conductive state. The period T21 is longer than a period T24 in which a threshold voltage of the drive transistor is compensated.
Abstract:
An image display device includes: an organic EL element, a first electrostatic capacitor, a driving transistor having a gate connected to a first electrode of the first electrostatic capacitor and a source connected to an anode of the organic EL element, a second electrostatic capacitor having an electrode connected to a second electrode of the first electrostatic capacitor, a negative power source line which determines the potential of a cathode of the organic EL element, and a scanning line driving circuit which controls a first switching transistor, a second switching transistor, and a third switching transistor. In a non-light-emitting period, the scanning line driving circuit sets, during a period from a start of a reset period to an end of the non-light-emitting period, a fixed voltage corresponding to the potential of the negative power source line to the source electrode of the driving transistor.
Abstract:
A method of fabricating a display panel apparatus, includes forming a TFT layer, forming a planarizing film, forming a lower electrode, an electrode plate, and an auxiliary electrode, forming banks, forming the organic EL layer, and forming an upper electrode. The electrode plate has an opening exposing a portion of a surface of the planarizing film. In at least one of the forming of the lower electrode, the electrode plate and the auxiliary electrode, and the forming of the banks, the opening of the electrode plate outgasses the planarizing film. The electrode plate has a power supply that receives current through the electrode plate. The opening extends in parallel with a side of the display near the opening. Current flowing between the power supply and a portion connecting the auxiliary electrode and the electrode plate flows along an extending direction of the opening.
Abstract:
A luminescent display device includes a substrate and first and second thin-film transistors above the substrate. The first thin-film transistor includes a semiconductor layer, a gate insulating film, a gate electrode, a source electrode and a drain. The second thin-film transistor includes a semiconductor layer, a gate insulating film, a gate electrode, and a drain electrode. The device also includes an interlayer insulating film on the gate electrode of the first thin-film transistor and the gate electrode of the second thin-film transistor, a first capacitor electrode on the interlayer insulating film, and a luminescent element such that the first capacitor electrode and the gate electrode of the first thin-film transistor constitute a first capacitor, and the first capacitor electrode is not connected to the source electrode and the drain electrode of the first thin-film transistor.