Abstract:
A method includes obtaining a dark-field signal generated from a dark-field CT scan of an object, wherein the dark-field CT scan is at least a 360 degree scan. The method further includes weighting the dark-field signal. The method further includes performing a cone beam reconstruction of the weighted dark-field signal over the 360 degree scan, thereby generating volumetric image data. For an axial cone-beam CT scan, in one non-limiting instance, the cone-beam reconstruction is a full scan FDK cone beam reconstruction. For a helical cone-beam CT scan, in one non-limiting instance, the dark-field signal is rebinned to wedge geometry and the cone-beam reconstruction is a full scan aperture weighted wedge reconstruction. For a helical cone-beam CT scan, in another non-limiting instance, the dark-field signal is rebinned to wedge geometry and the cone-beam reconstruction is a full scan angular weighted wedge reconstruction.
Abstract:
The invention relates to a method and an X-ray detector (100) for detecting incident X-ray photons (X). The X-ray detector (100) comprises at least one sensor unit (105) in which X-ray photons (X) are converted into sensor signals (s) and at least one flux sensor (104) for generating a flux signal (f) related to the flux of photons (X). The sensor signals (s) are corrected based on the flux signal (f). In a preferred embodiment, the sensor signals (s) represent a spectrally resolved pulse counting. The flux sensor (104) may be integrated into an ASIC (103) that is coupled to the sensor unit (105).
Abstract:
A method includes obtaining first spectral image data, which includes at least a first component corresponding to a targeted first K-edge based contrast agent administered to a subject if a target of the targeted first K-edge based contrast agent is present in the subject, decomposing the first spectral image data into at least the first component, reconstructing the first component thereby generating a first image of the targeted first K-edge contrast agent, determining if the targeted first K-edge contrast agent is present in the first image, and generating a signal indicating the targeted first K-edge contrast agent is present in the first image in response to determining the targeted first K-edge contrast agent is present in the first image.
Abstract:
The present invention relates to a photon counting detector comprising a first direct conversion layer (10) comprising a low-absorption direct conversion material (11) for converting impinging high-energy electromagnetic radiation (100) into a first count signal and first electrical contacts (12), a second direct conversion layer (20) comprising a high-absorption direct conversion material (21) for converting impinging high-energy electromagnetic radiation (100) into a second count signal and second electrical contacts (22), said high-absorption direct conversion material having a higher absorption than said low-absorption direct conversion material, and a carrier layer (30, 30a, 30b) comprising first and second terminals (31, 32) in contact with the first and second electrical contacts and processing circuitry (35) configured to correct, based on the first count signal, the second count signal for errors, wherein said first direct conversion layer and the second direct conversion layer are arranged such that the high-energy electromagnetic radiation transmits the first direct conversion layer before it hits the second direct conversion layer.
Abstract:
The present invention relates to an anti-scatter grid (ASG) assembly comprising a first and a second grid, wherein the second grid is arranged on top of the first grid and comprises a lateral shift. The lamella thickness of the first grid is smaller than the lamella thickness of the second grid. The present invention further relates to a detector arrangement comprising a pixel detector and an ASG assembly arranged on top of the pixel detector.
Abstract:
A signal processing system (SPS) and related method. The system comprises an input interface (IN) for receiving at least two data sets, comprising a first data set and second data set. The first data set is generated by an X-ray detector sub-system (XDS) at a first pixel size and the second data set generated at a second pixel size different from the first pixel size. An estimator (EST) is configured to compute, based on the two data sets, an estimate of a charge sharing impact.
Abstract:
The invention relates to radiation detector for registering incident photons, comprising (i) detection circuitry (202, 206, 207) configured to provide an electric output signal in response to incident photons, the output signal comprising pulses having an amplitude indicative of energies deposited in the radiation detector by the incident photons, and (ii) an energy estimating circuit (2081, . . . , 208N; 2091, . . . , 209N) configured to detect that the output signal is larger than at least one threshold corresponding to an energy value in order to determine energies of incident photons. The radiation detector further comprises a registration circuit (211) configured to detect incident photons independent of a comparison of the output signal with the at least one threshold. Moreover, the invention relates to a method for detecting photons using the radiation detector.
Abstract:
Present invention relates to devices and methods for determining a calcium content by analyzing cardiac spectral CT data. CT projection data (9), obtainable by scanning a cardiac region of a subject using a spectral CT scanning unit, is modelled (12) by applying a material decomposition algorithm to the projection data to provide a calcium-specific component. Tomographic reconstructions (13) of the projection data, to provide a first 3D image (8), and of the calcium-specific component, to provide a second 3D image (6), are performed. The first 3D image (8) is segmented (14) to provide an image mask (5) corresponding to a cardiovascular structure of interest, a part of the second 3D image (6) is selected (15) based on the image mask (5), and a calcium content is calculated (16) in the cardiovascular structure of interest based on the selected part of the second 3D image (6).
Abstract:
A phantom body (PB) for use in a differential phase contrast imaging apparatus (IM) for calibration of same. The phantom body (PB) allows for simultaneous calibration of three different image signal channels, namely refraction, phase shift and small angle scattering.
Abstract:
The grating device (1) for an X-ray imaging device comprises a grating arrangement (10) and an actuation arrangement (20). The grating arrangement (10) comprises a plurality of grating segments (11). The actuation arrangement (20) is configured to move the plurality of grating segments (11) with at least a rotational component between a first position and a second position. In the first position, the grating segments (11) are arranged in the path of an X-ray beam (30), so that the grating segments (11) influence portions of the X-ray beam (30). In the second position, the grating segments (11) are arranged outside the portions of the path of an X-ray beam (30), so that the portions of the X-ray beam (30) are unaffected by the grating segments (11).