Abstract:
Disclosed in an embodiment is a pressure detection sensor comprising: an elastic layer including a hole; and an electrode layer including a plurality of electrodes arranged on the elastic layer so as to be spaced apart, wherein the elastic layer includes a variable member arranged in the hole, the plurality of electrodes are electrically connected to each other by outside pressure, and at least one of the plurality of electrodes covers a part of the hole.
Abstract:
A sensor device may include an elastic dielectric; a sensing unit including a first wiring and a second wiring for outputting sensing signals, and a flexible printed circuit board provided with a first connection terminal to which the first wiring is connected, and with a second connection terminal to which the second wiring is connected. The first wiring is formed on one surface of the dielectric and may be connected to the first connection terminal. The second wiring is formed on another surface of the dielectric facing the surface on which the first wiring is formed and may be connected to the second connection terminal.
Abstract:
The present invention relates to a pressure sensing chair capable of wireless charging, detecting body pressure, and measuring the distribution of body pressure. A pressure sensing chair according to one embodiment of the present invention comprises: at least one sensor unit including a first electrode layer having a plurality of first electrode patterns arranged in a first direction, a second electrode layer having a plurality of second electrode patterns arranged in a second direction crossing the first direction, and a dielectric layer arranged between the first electrode layer and the second electrode layer; and a module unit connected to the sensor unit and including a communication unit and a wireless charging unit.
Abstract:
A light source circuit unit and a lighting device including the light source circuit unit that are configured such that a bent-type metal substrate is formed on an upper surface of the printed circuit board so that the occurrence of a defect due to circuit damage at a bent part upon bending the substrate can be prevented, and slimness and a heat-dissipation property of a device can be improved. The light source circuit board includes: a substrate having a first part with at least one opening portion, and a second part bent from the first part; a printed circuit board on one surface of the substrate; and a light source element mounted to the printed circuit board and inserted into the opening portion, the light source element emitting light to an opposing side of the substrate.
Abstract:
Provided is a circuit board including: a supporting substrate including a first region to which light emitting elements are mounted and a second region extending to be bent from the first region, wherein the second region comprises: a connector mounting portion to which a connector for supplying an electric current to the light emitting elements is mounted; and a non-mounting portion of a connector separated and spaced apart from the connector mounting portion, wherein the connector mounting portion is formed lower than the non-mounting portion of the connector.
Abstract:
There is provided an epoxy resin compound including an epoxy resin including a crystalline epoxy, a curing agent, and an inorganic filler. Also, there is provided a radiant heat circuit board including a metal plate, an insulating layer formed on the metal plate; and a circuit pattern formed on the insulating layer, in which the insulting layer is formed by curing an epoxy resin compound including an epoxy resin including a crystalline epoxy, a curing agent, and an inorganic filler.
Abstract:
An epoxy resin compound including an epoxy resin, a hardening agent, and an inorganic filler as a main component is provided. The epoxy resin includes an epoxy resin represented by a chemical formula. Therefore, the epoxy resin having a mesogen structure that increases crystallinity is used, and thus thermal conductivity can be increased. Further, the epoxy resin is used as an insulating material for a printed circuit board, and thus a high radiant heat substrate can be provided.