Abstract:
A first Multimedia over Coax Alliance (MoCA) compatible device comprises a physical layer profiling circuit and a spectrum abstraction circuit. The physical layer profiling circuit may for example be operable to measure a performance metric for each of a plurality of subbands on a shared coaxial cable of a MoCA network. The spectrum abstraction circuit may for example be operable to select, based at least in part on the measured performance metric, a subset of the subbands to be used for communication over the coaxial cable between the first MoCA-compatible device and a second MoCA-compatible device. The spectrum abstraction circuit may for example be operable to receive an indication of whether channel bonding is to be used for the communication over the coaxial cable between the first MoCA-compatible device and the second MoCA-compatible device. The spectrum abstraction circuit may for example be operable to perform the selection of the subset of the subbands based at least in part on the indication of whether channel-bonding is to be used.
Abstract:
A transceiver system may be configured to provide tunable bandwidths. The transceiver may comprise a signal processing component and a filtering component, which may comprise a plurality of filters. The signal processing component may determine one or more adjustments that are applicable to one or both of a first filter that is configured for filtering signals corresponding to a first frequency band associated with a first stream, and a second filter that is configured for filtering signals corresponding to a second frequency band associated with a second stream. The one or more adjustments may correspond to modifications in one or both of the first frequency band and the second frequency band. The one or more adjustments may be communicated to the filtering component, which may apply the adjustments to one or more of the plurality of filters.
Abstract:
A cable modem termination system (CMTS) may determine, for a plurality of cable modems served by the CMTS, a corresponding plurality of SNR-related metrics. The CMTS may assigning the modems among a plurality of service groups based on the SNR-related metrics. For any one of the modems, the CMTS may configure physical layer communication parameters to be used by the one of the modems based on a SNR-related metric of a service group to which the one of the modems is assigned. The physical layer communication parameters may include one or more of: transmit power, receive sensitivity, timeslot duration, modulation type, modulation order, forward error correction (FEC) type, and FEC code rate. The CMTS and the modems may communicate using orthogonal frequency division multiplexing (OFDM) over a plurality of subcarriers, and the physical layer communication parameters may be determined on a per-subcarrier basis.
Abstract:
A receiver includes a plurality of input paths for receiving and processing a plurality of input RF signals. The input paths isolate one or more portions of corresponding ones of the received input RF signals, and combine the isolated portions of the corresponding ones of the received input RF signals onto one or more output signals. A bandwidth of the isolated portions of the corresponding ones of the received input RF signals and a bandwidth of the output signals are variable. The isolated portions of the corresponding ones of the received plurality of input RF signals are extracted and utilized to generate the output signals. The portions of the corresponding ones of the received plurality of input RF signals may be mapped into one or more channel slots in the time domain. The channel slots may be assigned in the frequency domain to one or more frequency bins.
Abstract:
Methods and systems are provided for loop-through for multi-chip communication systems. Receiver circuitry, that is operable to receive one or more input feeds, may comprise a plurality of chips, each of which may be configurable to generate a corresponding output comprising one or more feed elements (e.g., channels) extracted from the input feed(s). However, only a first chip may be operable to handle reception and/or initial processing of the one or more input feeds, with each one of the remaining chips processing a loop-through feed generated by the first chip, in order to generate the corresponding output of that chip. The first chip generates the loop-through feed based on the one or more input feeds, such as after the initial processing thereof in the first chip. Generating the loop-through feed may comprise applying channelization (e.g., separately for each remaining chip), switching based processing, and/or interfacing based processing.
Abstract:
A CMTS may receive a request that a network device be permitted to enter a power-saving mode of operation. In response, the CMTS may enter a power-saving mode of operation wherein MAC management messages, transmission opportunities for the sleeping network device, and/or contention periods on one or more channels occur at independently determinable intervals. The CMTS may then transmit a message granting the network device permission to enter the power-saving mode of operation. The CMTS may start a sleep timer upon transmitting the MAC management message and may deregister the network device if no communication is received from the network device prior to expiration of the sleep timer. The CMTs may buffer traffic destined for the network device in a buffer of the CMTS while the network device is in the power-saving mode of operation, and may wake the network device upon the amount of buffered traffic reaching a threshold.
Abstract:
A network device may comprise one or more circuits including a clock signal generator, an ADC, and a processor. The ADC may digitize a received signal across a range of frequencies that encompasses a first band of frequencies used for a first network and a second band of frequencies used for a second network. A sampling frequency of the ADC may be determined by a frequency of a clock signal output by the clock signal generator. The processor may determine whether the first network is active and whether the second network is active. The processor may configure the clock generator such that, when both of the first network and the second network are active, the clock signal is set to a first frequency, and when the first network is active and the second network is inactive, the clock signal is set to a second frequency.
Abstract:
A cable modem comprises transmitter circuitry, receiver circuitry, and memory. Upon power up of the cable modem in the field, the transmitter circuitry transmits one or more first signals into a network. The receiver circuitry measure echoes of the transmitted one or more first signals. The receiver circuitry generates an installation figure of merit based on the measured echoes and factory-calibration echo measurements stored in the memory. The communication device begins DOCSIS® network registration if the installation quality measurement meets a determined requirement and generates a notification to troubleshoot the installation of the communication device if the installation quality measurement does not meet a determined requirement.
Abstract:
An electronic communication device comprises echo cancellation circuitry and signal modification circuitry. The echo cancellation circuitry may be operable to generate a first signal that approximates interference present in a second signal. The signal modification circuitry may be operable to generate a first cancellation signal in a frequency band that is not used on a communication medium over which the electronic communication device is configured to communicate. The signal modification circuitry may be operable to combine the first cancellation signal with the first signal, wherein the combining of the signals results in a modified first signal that has a lower crest factor and/or peak-to-average power ratio than the first signal. The signal modification circuitry may be operable to combine the modified first signal with the second signal to reduce interference present in the second signal.
Abstract:
Systems and methods are provided for distortion redirection in phased arrays. In an electronic device configured for transmission and reception of signals and having a two-dimensional phased array, effects of distortion, corresponding to at least one processing function applied during communication of signals, on the communication of signals may be assessed, and based on the effects of distortion, one or more adjustments for mitigating the effects of distortion may be configured and applied during processing of signals. Assessing the effects of distortion may include determining one or more characteristics associated with the communication of the signals, where the one or more characteristics relate and/or are subject to the effects of the distortion, and assessing the effects of distortion based on the one or more characteristics.