Abstract:
A planar lighting device includes a light guide plate and a side-emitting lighting module. The light guide plate includes a light emission surface, a back light surface, and at least one side surface. The back light surface is opposite to the light emission surface, and the side surface extends between the light emission surface and the back light surface. The side-emitting lighting module is embedded into the light guide plate, such that the side-emitting lighting module emits light toward the side surface of the light guide plate. The light is then guided by the light guide plate and emerges from the light emission surface of the light guide plate.
Abstract:
The present invention discloses a microscopy imaging structure with phase conjugated mirror and the method thereof. The afore-mentioned imaging structure produces a reverse focusing conjugated probe beam together with an original probe beam. These two probe beams meet at the focal point in the object body to be probed, and an interference pattern is produced. The interval between any two consecutive wave fronts in the interference pattern is then half of the wavelength of the original probe beam, and hence the vertical resolution of the image is improved. The present invention also applies a light modulator module on the probe beam to easily adjust the depth of the focal point of the probe beam and the phase conjugated reverse focusing probe beam in the object body. With the adoption of this invention, the size or position limitation of the target object is eliminated and the imaging resolution is also improved.
Abstract:
Provided is a field space data normalization processing method applicable to GBP algorithm, including the steps of: performing vector matrix transformation, by inputting first vector data and transforming it into a first matrix expression; performing first matrix transformation, by transforming the first matrix expression into a second matrix expression; providing a means of normalization; performing normalization and third matrix transformation, by performing data normalization and transformation on the second matrix expression to obtain a third matrix expression; transforming a third matrix and outputting second vector data, by transforming the third matrix expression into a fourth matrix expression and then transforming it into second vector data and outputting it. Therefore, normalization of camera pose data in SLAM is achieved.
Abstract:
A light-emitting diode lighting structure for improving back-illumination efficiency is revealed. The light-emitting diode lighting structure is disposed on a substrate and composed of a light emitting diode (LED) and a reflective panel. The LED provided with a packaging lens has a light emitting side and a backside. The reflective panel is arranged at the light emitting side of the LED and located adjacent to the packaging lens. A part of light emitted from the light emitting side is reflected to the substrate by the reflective panel. Thereby the illumination on the substrate at the backside can be increased. Moreover, continuous lighting is generated so that messages shown on signboards can be read more clearly and comfortably when a plurality of LEDs is disposed on and applied to the signboards.
Abstract:
The present invention discloses active blue light leakage preventing LED structures. Each of the structure includes a circuit board, at least one blue light LED die, a photo detector/thermal sensor and a wavelength transformation layer, wherein the electric circuit on the circuit board receives detection signal from the photo detector/thermal sensor and turns off the said blue light LED die accordingly. With the implementation of the present invention, the active blue light leakage preventing LED structure turns off the blue light LED die when it reaches its usage life span limit thus avoiding damage to human from the massive release of blue light.
Abstract:
The present invention discloses an optic distribution meter that includes a testing system and an imaging system. The testing system includes an arc-shaped brace which has an extended object holder; and a rail base which has a first rail. The imaging system, set at a side of the testing system, includes a screen and an image catcher. With the implementation of the present invention, the rail base is able to rotate or move an object to a test angle with very little light blocking of measurements. Besides, with the first rail supporting the object, the incident angle of the light of a light source to the object remains unchanged when the measuring angle of the imaging system is changed. Thus ensure the accuracy of measurements of the optic distribution meter.
Abstract:
A light interference module includes an object lens, a first light-guiding element, and a second light-guiding element. The object lens is configured to project a signal light beam to an optical storage media. The first light-guiding element is configured to project a first reference light beam to the optical storage media, in which the first reference light beam and the signal light beam produce a first interference pattern on the optical storage media. The second light-guiding element is configured to project a second reference light beam to the optical storage media, in which the second reference light beam and the signal light beam produce a second interference pattern on the optical storage media, and the first interference pattern is different from the second interference pattern.
Abstract:
A high-contrast miniature headlamp includes at least one light-emitting element, a first reflective surface, and a second reflective surface. The high-contrast miniature headlamp forms a virtual equivalent light source of the light-emitting element via the first reflective surface to increase the equivalent distance between the light source and the second reflective surface, thereby enhancing the contrast of the cutoff line of the beam pattern produced by the headlamp. The headlamp is so configured that, under the condition of maintaining its miniature design and reducing cost without compromising optical efficiency, a beam pattern with a high-contrast cutoff line (i.e., a high-contrast beam pattern) can be generated to significantly improve the safety provided by automobile lighting.
Abstract:
A digital holographic microscope is provided. The digital holographic microscope includes a light source, a grating, an image sensing device, and an optical module. The light source is configured for providing a light beam. The grating is disposed between the light source and a sample. The grating is configured for splitting the light beam into a reference light beam and an object light beam. The image sensing device is configured for collecting the reference light beam, and collecting the object light beam reflected from the sample. The optical module is disposed between the light source and the sample, and is configured for guiding the reference light beam to the image sensing device, and guiding the object light beam to the sample.
Abstract:
The present invention provides a digital hologram recording system and a numerical reconstruction method for a hologram, which are used for capturing an image of an object and recording it as a holographic data. Said system comprises: signal light, formed after irradiating the object with a light source; an image detector, for recording interference fringes of the signal light; and a light pipe, arranged in a path of the signal light and located between the object and the image detector, wherein the light pipe has a reflection surface, and a part of the signal light enters the image detector after reflected by the reflection surface of the light pipe. The present invention can make the collected signal equivalent to several times of the pixel counts of the image detector, thereby able to break through the spatial bandwidth limitation and shortening the amount of time required to measure the hologram.