Abstract:
A method for reading and writing with holographic storage system includes (a) providing a reference light and a signal light; (b) transferring the reference light and the signal light to an optical storage medium to record an interference grating; (c) changing the reference light and the signal light and repeating the step of providing another changed reference light and another changed signal light to step (b), in which the reference light and the interference grating are one-to-one correspondence; (d) moving the optical storage medium and repeating steps (a) to (c); (e) providing a reading light which includes the reference lights to the optical storage medium to simultaneously read the interference gratings to form an interference result, any one of the reference lights cannot read out the interference gratings recorded by the other reference lights; and (f) moving the optical storage medium and repeating step (e).
Abstract:
A lensless holographic imaging system having a holographic optical element includes: a coherent light source for outputting a first light beam and a second light beam, wherein the first light beam irradiates a first inspection plane to form first object-diffracted light; a light modulator for modulating the second light beam into reading light having a specific wavefront; a multiplexed holographic optical element, wherein the first object-diffracted light passes through the multiplexed holographic optical element, and the reading light is input into the multiplexed holographic optical element to generate a diffracted light beam as system reference light; and an image capture device for reading at least one interference signal generated by interference between the first object-diffracted light and the system reference light. The lensless holographic imaging system has a relatively small volume and relatively high diffraction efficiency.
Abstract:
The present invention discloses an optic distribution meter that includes a testing system and an imaging system. The testing system includes an arc-shaped brace which has an extended object holder; and a rail base which has a first rail. The imaging system, set at a side of the testing system, includes a screen and an image catcher. With the implementation of the present invention, the rail base is able to rotate or move an object to a test angle with very little light blocking of measurements. Besides, with the first rail supporting the object, the incident angle of the light of a light source to the object remains unchanged when the measuring angle of the imaging system is changed. Thus ensure the accuracy of measurements of the optic distribution meter.
Abstract:
A holographic storage layer includes a reflective structure and photosensitive units. The reflective structure is a grid-shaped structure and includes cavities. The photosensitive units are disposed in the cavities, in which each of the photosensitive units is surrounded by the reflective structure. First openings and second openings are defined by the reflective structure, and the photosensitive units are exposed by the first openings and the second openings respectively.
Abstract:
The present invention discloses a microscopy imaging structure with phase conjugated mirror and the method thereof. The afore-mentioned imaging structure produces a reverse focusing conjugated probe beam together with an original probe beam. These two probe beams meet at the focal point in the object body to be probed, and an interference pattern is produced. The interval between any two consecutive wave fronts in the interference pattern is then half of the wavelength of the original probe beam, and hence the vertical resolution of the image is improved. The present invention also applies a light modulator module on the probe beam to easily adjust the depth of the focal point of the probe beam and the phase conjugated reverse focusing probe beam in the object body. With the adoption of this invention, the size or position limitation of the target object is eliminated and the imaging resolution is also improved.
Abstract:
A holographic light-emitting module includes a light source module and a light shape control module. The light source module is configured to provide a signal light beam and a reference light beam, in which polarizations of the signal light beam and the reference light beam are orthogonal. The light shape control module is configured to receive the signal light beam and the reference light beam propagated from the light source module, in which the signal light beam and the reference light beam are modulated and emitted by the light shape control module The reference light beam is surrounded by the signal light beam and located at a center of the signal light beam, and the signal light beam and the reference light beam are partially overlapped.
Abstract:
A light emitting device is provided to produce white light with a stable correlated color temperature and stable color coordinates. The light emitting device includes a blue LED chip and a yellow phosphor. The blue LED chip has a peak wavelength X slightly smaller than the peak wavelength Y of the phosphor such that when the light emitting device is subjected to a predetermined operating current, the phosphor decays due to thermal effect, and the LED chip has its emission spectrum red-shifted to substantially match with the excitation spectrum of the phosphor. At this time, the excitation ability of the LED chip is increased and causes an increase of yellow power output from the phosphor that substantially compensates a decrease of yellow light output caused by the phosphor.
Abstract:
An optical head-mounted display includes an eyeglass frame, a holographic optical element supported by the eyeglass frame to be confronted by an eye of a wearer, and a projector mounted on the eyeglass frame to project image information on the holographic optical element. The projector includes a LED light source, a beam-splitting polarizer, a spatial light modulator, a lens set and a mechanical one-dimensional scanner. The mechanical one-dimensional scanner reflects the transformed light beam from the lens set onto the holographic optical element in one dimension at a time. When the reflective sheet is rotated at a range of angle in a brief moment of time, the holographic optical element receives from the rotating reflective sheet an array of one-dimensional modulated light beams and reflects the latter to form a two-dimensional image in the eye because of persistence of vision.