Abstract:
Technology is disclosed for utilizing version vector data of computing devices to optimize performance of the computing devices and/or other computer systems that provide various services to the computing devices (“the technology”). One embodiment includes analyzing version vectors of the computing devices to determining a user's usage pattern, such as the type of computing device used, the computer applications used on the computing device, and the time of day of usage. This information about usage pattern and other information that can be determined using the version vectors can enable system optimizations on both individual user level and a group of users level. For example, on the individual user level, knowing user's usage pattern may enable automatic file synchronization between multiple devices without user intervention. On the group level, a service provider may allocate resources (servers, bandwidth, etc.) to accommodate the group's usage pattern.
Abstract:
Technology is disclosed for migrating at least portions of a video streaming application to a cloud server. The migration is based on an optimization factor of a video streaming application. The optimization factor can be computed based on consumption of computing resources of the computing device. The video streaming application is a multi-threaded application in which a background thread performs tasks that may not require user interaction and a foreground thread performs tasks that may require user interaction. A service component of the video streaming application that obtains video streaming data from video servers is one example of the background thread. A user interface component that displays the video streaming data to a user via a user interface is an example of the foreground thread. If the optimization factor of the service component is below a predefined threshold, the service component is transferred to the cloud server for further processing.
Abstract:
Technology is disclosed for migrating at least portions of a video streaming application to a cloud server. The migration is based on an optimization factor of a video streaming application. The optimization factor can be computed based on consumption of computing resources of the computing device. The video streaming application is a multi-threaded application in which a background thread performs tasks that may not require user interaction and a foreground thread performs tasks that may require user interaction. A service component of the video streaming application that obtains video streaming data from video servers is one example of the background thread. A user interface component that displays the video streaming data to a user via a user interface is an example of the foreground thread. If the optimization factor of the service component is below a predefined threshold, the service component is transferred to the cloud server for further processing.
Abstract:
Technology is disclosed herein for migrating execution of at least a portion of a photo application to a server. According to at least one embodiment, a computing device monitors the photo application executing at the mobile device to identify a background thread and a foreground thread of the photo application, determine a current workload of the mobile device, transmit a received photo and an instance of the background thread to the server when the determined current workload exceeds a predefined threshold, receive a processed photo from the server, and provide access to the processed photo through the mobile device using the user interface generated by the foreground thread of the photo application.
Abstract:
Technology is disclosed for backing up and retrieving data in a distributed backup system (“the technology”). Files of a user can be stored across multiple computing devices (“the devices”) of the user, e.g., mobile devices, and/or at a server, e.g., a cloud storage server, in the distributed backup system. The user can define various policies for storing different files at different devices. For example, the user may define a policy for storing video files on a device that has a bigger display. The devices can be used as an edge cache of the distributed backup system in serving files to the user. Upon receiving a request for retrieving a file, the technology determines if any of the user devices that are in proximity to the requesting device has the file. If yes, the file is transmitted to the user from the proximate device instead of from the server.
Abstract:
A technique and apparatus for backing up and restoring game application state across multiple devices are disclosed herein. The method includes running an instance of a game application at a first device. Based on any of various criteria, such as the proximity between the first device and a second device or a priority of synchronization, a computer makes a determination to synchronize the application state between the two devices. The computer causes the application state data, which represents an application state of the game application running on the first device, to be saved and made available to the second device, such as by saving the application state data to cloud storage. The second device receives the application state data and restores the game application state.
Abstract:
At least one embodiment of this disclosure includes a method of resource balancing execution of an application involving multiple devices. The method can include: identifying an application executing on an operating system of a first computing device; identifying a resource type to facilitate the executing of the application; identifying multiple computing devices each having at least an available resource instance of the identified resource type, wherein the multiple computing devices are reachable by a communication protocol of the first computing device; and selecting a target computing device to offer up a target resource instance of the resource type to the application based at least partly on a comparable limitation of each available resource instance of the multiple computing devices.
Abstract:
At least one embodiment of this disclosure includes a method of sharing application states across different user profiles. The method can include: receiving a request from a first computing device associated with a first user profile to load an application state of a target application, wherein the application state is owned by a second user profile; verifying permission for the first user profile to load the application state owned by the second user profile; configuring a sharing instance of the application state of the target application by accessing application data of the application state associated with the second user profile in a storage service; and sending the sharing instance to be loaded onto the first computing device.
Abstract:
Technology is disclosed for downloading image files associated with a user to a computing device of the user from a distributed backup system. Each of the image files is associated with a popularity score that is determined as a function of a user-related access pattern and a group-related access pattern of the image files. While the user-related access pattern is determined based on an access of the image files by the user, the group-related access pattern is determined based on an access by a group of users. The image files are categorized into priority files and non-priority files based on the popularity score of the image files. The priority files are downloaded in an original format and the non-priority files are downloaded in one or more image qualities that minimize the consumption of computing resources in downloading the image files.
Abstract:
Technology disclosed herein includes a method for system restoration between computing devices by a tapping mechanism. A first device detects (e.g., via NFC) a second device in proximity. The first device transmits a user credential of the first device to the second device. Either directly or via a cloud storage service, the first device instructs the second device to download a copy of system data of the first device from the cloud storage service, instead of from the first device. The second device is able to restore a system state of the first device on the second device, using the user credential and the system data.